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LOW-FREQUENCY NOISE REDUCTION OF SPACECRAFT STRUCTURES 

By R. H. Lyon, C. W. Dietrich, E. E. Ungar, 
R. W. Pyle, Jr., and R. E. Apfel 

Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 

INTRODUCTION AND SUMMARY 

There is an increasing interest on the part of engineers in 
the low-frequency sound transmission of aerospace structures. 
The prime reason for this interest is the discovery that low- 
frequency noise may have physiological and psychoacoustic 
effects on man (Refs. 1, 2), coupled with the fact that large 
space vehicles are exposed to high levels of low-frequency 
acoustic excitation from large rockets and from aerodynamic 
excitation (Ref. 3). Quite aside from spacecraft applications, 
low-frequency noise reduction considerations are important also 
in the design of enclosures for the acoustic isolation of small 
and compact electromechanical and electronic assemblies. 

The sound-isolation effectiveness of an enclosure for a 
given space is described by the noise reduction (NR) of the 
enclosure. The NR of an enclosure is defined as the difference 
between the sound pressure levels which occur at a position in 
the enclosed space with and without use of the enclosure 
(Ref. 4). The noise reduction (NR) should not be confused with 
the transmission loss (TL), which is defined as the difference 
between the acoustic power level incident on one side of an 
infinite panel and that transmitted through the panel. The NR 
depends on TL and acoustic properties of the receiving space. 

Traditional acoustical engineering calculations of an 
enclosure NR are based on the TL of its walls. However, the TL 
concept does not apply for panels whose dimensions are smaller 
than half an acoustic wavelength. At low frequencies the 
acoustic half-wavelengths become so large that they exceed 
typical major spacecraft structural dimensions; this "low- 
frequency" range is the one considered in this report. The 
exact extent of this frequency range clearly depends on the size 
of the structure being considered. For the Apollo Command 
Module, with a typical dimension of the order of 10 ft, the low- 
frequency range encompasses all frequencies below 55 Hz. For 
an electronic subassembly having a dimension of the order of 1 ft, 
this frequency range extends from 0 to 550 Hz. 

Low-frequency sound may cause discomfort or injury to person- 
nel or may interfere with task-performance efficiency. Such 



adverse effects appear to be associated with resonances of the 
human body between 2 and 20 Hz (Ref. 1). Some of these 
resonances are primarily due to body masses vibrating in combi- 
nation with muscular and tendon compliances. Others involve 
acoustical elements, e.g. the diaphragm may resonate with air 
cavities within the lungs. Criteria for vibration and sound 
environments for trained astronauts have not been fully 
established at this time. 

Probably the most important adverse psychoacoustic effect 
of the low-fre uency noise is its interference with speech 
communication ? Ref. 2). The entire acoustic spectrum con- 
tributes to speech interference, of course, but low frequencies 
present a particular problem since they are not attenuated 
effectively by ear phones or head sets. Recent psychoacoustic 
studies have also shown that high-level low-frequency noise can 
have a masking effect over a frequency range which extends 
several octaves above the noise range. This effect is known 
as "the upward spread of masking." 

The purpose of this report is to present an approach for 
predicting the low-frequency noise transmission of spacecraft 
structures on the basis of a series of experimental and theo- 
retical analyses. The approach developed here should aid the 
spacecraft designer in estimating the low-frequency noise 
reductions he may expect, and should provide him with sufficient 
insight into the processes of sound transmission at low frequen- 
cies to enable him to avoid spacecraft designs which will have 
ineffective acoustic isolation at low frequencies. 

Many of the calculations and discussions in this report 
refer to an acoustic model based on the Apollo Command Module 

This module is typical of spacecraft that have been built 
and it is likely to be a prototype for others to 

come. Howe&, this report is not just concerned with the 
Apollo CM; rather, it is concerned with developing a more 
general, widely applicable acoustical model of axisymmetric 
spacecraft of single- and double-shell configuration. 

Data to be obtained from laboratory and flight tests of the 
Apollo CM should prove extremely useful for further study of 
many of the notions presented in this report. One may hope for 
some agreement between'the field data and the analyses presented 
here. However, for any process as complex as sound and vibra- 
tion transmission in complicated built-up structures, the 
process of model development must be a continuing one. Although 
many aspects of the models developed here are expected to shed 
light on the test data, the test data are equally expected to 
suggest modifications and changes in the models. 
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In the following pages we build up a conceptual model of 
low-frequency sound transmission from a series of theoretical 
and experimental analyses, which are intended to emphasize 
various aspects of the structural and acoustic behavior of a 
spacecraft. In the analysis of model systems, some of which 
differ in appearance quite markedly from the actual spacecraft, 
tie shall indicate the limitations of each model (i.e., the 
deviations of the ideal model behavior from the actual), and we 
shall indicate the additional effects that must then be included. 
Such a model development procedure is fairly.commonly used in 
architectural acoustics, where many competing effects can occur; 
it is of the utmost inportance for the engineer to know over what 
frequency range and under what conditions each of the competing 
effects will have dominance. 

It is also an important function of this report to suggest 
%oustic models and experiments for testing some of the concepts 
developed. Choices of such models (some of which may be similar 
Lo small-scale models which we have studied) are indicated when 
appropriate, based on experience gained in our test program. 

Some of the major conclusions of this study are summarized 
below: 

1. 

2. 

3. 

Over an important portion of the low-frequency range 
the noise transmission of shells is controlled by their 
"quasi-static" acoustic compliance. The compliance of 
curved and dome-like shells tends to be membrane- 
controlled. Such shells tend to be much stiffer than 
flat shell segments, the compliance of which is 
primarily flexure-controlled. 

Acoustic resonances of contained spaces may occur. In 
the Apollo Command Module the space between the two 
shells is narrow and long (as measured between the two 
poles of symmetry). It thus permits the occurrence of 
a low-frequency resonance which may drastically reduce 
the low-frequency NR. 

When flat segments are present, and when curved shells 
are interrupted by relatively stiff reinforcing members, 
volume-displacing structural resonances will occur at 
low frequencies. These resonances will be deleterious 
to noise reduction since they produce "volume pumping" 
and compression of the contained volume. The space- 
craft design should avoid volume-pumping structural 
resonances below the frequency of the first acoustic 
mode of the contained volume. 
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4. Acoustical resonances between the venting system and 
the structural and acoustic elements of the spacecraft 
may occur. The importance of such a resonance in 
affecting NR will depend on the resonance frequency and 
on the efficiency with which the exterior low-frequency 
sound field can "drive" the resonance. 

5. Well-thought-out experimental analysis is an important 
adjunct to any acoustical-structural problem. This 
study shows that this is particularly true in the case 
of sound transmission, where many competing effects are 
present. Noise reduction experiments which are regarded 
only as proof tests, or as verification of a theoretical 
analysis, will not be so effective or so illuminating 
as tests which attempt to sort out competing vibrational 
and acoustical effects and to rank-order these in 
importance for the particular structure under considera- 
tion. 
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SYMBOLS 

a 

A 

A(s) 

AC 

% 

AS9AQ 

A(P) 
S 

A$)) 

At 

BC 

BS 

C 

9 
9 
C 

c(s) 

C con 
C eq 

% 

clJc2 

cl1 

cl2 

radius of flat plate or circular section 

effective cross-section area 

w(s) r(s) 

effective cross-section area of cylindrical 

partition area 

surface areas of incremental volume 

shell 

projected area of volume.element in plane perpendicular to e", 

projected area of volume element in plane perpendicular to g# 

surface area of receiving room 

sin f3L + sinh f3L 

cos @L + cash @L 

sound speed of acoustic medium 

slope 

longitudinal wave speed in shell material 

acoustic compliance of shell 

acoustic compliance per unit length of outer shell 

acoustic compliance of contained volume 

equivalent compliance of inner shell 

acoustic compliance of contained volume within shell 

constants evaluated from boundary conditions 

acoustic compliance of interspace volume 11 

acoustic compliance of interspace volume 12 



Cl,2 

c3 

'4,6 

c5 

c7 

'8 

c9 

CM command module 

b acoustic compliances of numbered 
sections in Figs. 13, 14 and 15 

CSM command service module 

dJ intercept 

D flexural rigidity 

DC 

DP 

flexural rigidity of cylindrical shell 

flexural rigidity of plate 

Z,,e^ 
8 

unit vectors 

E Youngls modulus 

EC 
Young's modulus for cylindrical shell 

f frequency 

fa lowest acoustical resonance frequency 

fm modal resonance frequency 

fr resonance frequency 

f mln lowest structural resonance frequency 

f ring ring frequency 

F displaced volume multiplying factor 



- 

i 

H 

: 
0 

sum of core thictiess and average &In thickness 

homogeneous panel or skin thickness density 
"flare" factor of slender horn > 

height of spherical segment 

I moment of inertia of cross section 

Tm(kd Bessel function of order m 

acoustic wave number at frequency CD 

wavenumber of horn resonance 

individual mount stiffness 

length of tube 

length of cylindrical shell 

pressure level in ith room 

ii 

“C 

% 

rJI 

circumferential mode number 

constant dependent on shell properties 

constant dependent on plate properties 

edge moment, Eq. (38) 
acoustic mass, Eq. (93) 

% 
structural mass 

Nl spar mass of spar 

% 
acoustic mass of vent 

Y 

% 

number of shell sections 

membrane forces in direction perpendicular 
to plane of Fig. 9 
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N# 
NR 

Nrk 

NRO 

N%ot 

nR 

53 

P 

P(S) 

P(X) 

<PS 

pi 
2 

Pi 

<P$ 

pref 

PO 

<P3 

Pl 

p2 

Pll 

p12 

membrane forces 

noise reduction 

noise reduction 

noise reduction 

in v direction of Fig. 9 

of inner shell 

of outer shell 

total noise reduction of inner and outer shells 

modal density of exterior acoustic space 

shell modal density 

applied pressure 

pressure at s 

solution of Webster's horn equation 

mean-square pressure In frequency band &II 

internal pressure increase with applied pressure p, 

mean-square reverberant acoustic pressure in 1 th room 

mean-square pressure of Internal sound field 
in frequency band &I 

2x10 -4 microbar 

externally applied pressure, Eq. (8) 
pressure produced at s=o, Eq. (150) 

mean-square pressure of external sound field 
in frequency band & 

pressure at point just external to CM 

pressure produced at test point 

pressure in interspace volume 11 

pressure in interior volume 12 



P 

F 

P con 

pO 

pR 

9c 

qP 
Q 

r 

r(s) 
4x) 

rO 

rl 

R 

S 

s 

sl 
s2 
s(x) 

SPL 

panel perimeter 

mean pressure 

gas pressure in shell before application of 
external pressure 

average (static) pressure 

amplitude of reflected pressure wave 

constant dependent on shell properties 

constant dependent on plate properties 

shell tension load 

radial distance from center of flat plate 

distance from polar axis to any point on P 

circular cross section of slender horn 

initial radius of slender horn 

radius of curvature of surface at A 

t 

room constant = At a(l-a) -l, Eq. (6) 

radius of sphere, Eq. (25) 

lineal dimension along line of constant @ 

C surface area of spherical segment 
linear coordinate of upper pole of median surface 

inner shell 

outer shell 

horn cross sectional area 

sound pressure level, also T'p 
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t 

% 

tfA 

%B 
T 

F 

TL 

U 

-t 
U 

U# # 

U 

u. 

Ul 

V 

<v2> 

viC 

33 

V 

iF 

AV 

V con 

ve 

average skin thickness 

core thickness 

thickness of inner skin 

thichess of outer &in 

shape factor for slender horn 

mean kinetic energy 

transmission loss 

radial shell deformation 

flow velocity 

components of flow velocity 

{ 

ratio defined by Eq. (38) 
volume velocity of shell mode 

volume velocity of source 

volume velocity emitted through outer shell 
due to source U, 

tangential displacement of shell 

square of kinetic energy of resonator 

point motion of attachment to inner cylinder 

source velocity 

volume 
-t 

decrease of shell with applied pressure 
volume of air space, Eq. (94) 

mean potential energy 

incremental potential energy 

volume contained in closed shell 

volume of exterior acoustic space 
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'rn volume displaced by circular plate due only to 
edge moment M 

vS 
volume contained within shell 

volume 
v11 

displacement of end-capped shell due to 
membrane action, Eq. (1.6) 
interspace volume, Fig. 20 

v12 
volume displacement of end-capped ahell due to 
axial loads, Eq. (17) 
volume contained within inner shell, Fig. 20 

W radial displacement of shell 

w(s) distance between A and B on line perpendicular to I' 

X 
C 

station locations on command module 

x1'x2 circumferential and axial coordinates on supported shell 

Y displacement of circular flat plate 

Ya'Yb coordinates of cone frustra 

z impedance 

zlC 
point Impedance of inner cylinder 

Z oc point impedance of shell 

Z spar translational impedance of spar 
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a 
absorption coefficient, Eq. (4) 
@L/2, Eq. (43) 
parameter to be optimized, Eq. (145) 

B 
relative stiffness parameter defined by Eq. (20) 

K 
d- 2-i' Eq. (88) _ 

relative stiffness parameter defined by Eq. (20) 
for cylindrical shell 

Y ratio of specific heats of enclosed gas 

r median surface 

6 radial expansion including reduction by Poisson effect 

6f asymptotic frequency separation between structural modes 

6O 
radial expansion neglecting reduction by Poisson effect 

A increment 

Ee polar strain 

% circumferential strain 

loss factor 

%ad radiation loss factor 

% 
structural loss factor 

8 0 
c' P plate edge rotations (Fig. 12) 

'rn structural modal energy 

eR modal energy of sound field 

K 

A, 

radius of gyration of shell cross section 

acoustic wavelength at critical frequency 
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C 

vP 
V 
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n- 

'inc 
II rad 
II trans 

Poisson8s ratio 

Poissonls ratio for cylindrical shell 

Poissonls ratio for plate 

ratio of modal den&ty of shell segment to 
that of flat plate of equal area 

3.1416 

acoustic power incident on 

radiated power from simple 

acoustic power transmitted 

density of acoustic medium 

ambient density 

density of panel material 

axial wavenumber 

incremental volume 

azimuthal angle 

flexural mode shape 

partition 

source 

by partition 

pressure mode-shape function 

cone flexure parameter 

test functions for interspace mode shape 

frequency 

panel acoustic critical frequency 

frequency band Including resonance frequency 
of stn\ctural mode 
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CHAPTER I 

A REvIEw OF '1933 "CLASSICAL" NOISE REMCTION 

.INTRODUCTION 

Classical noise reduction (NR) calculations and concepts are 
reviewed in the present chapter in order to summarize 'the impor- 
tant principles involved, to point out their ranges of applica- 
bilit-ph and to indicate why and to what extent these classical 
methods are generally inappropriate for dealing -with the low- 
frequency noise ,reduction of spacecraft. 

The problems of predicting and designing for noise reduction 
in buildings are treated routinely by architectural acousticians, 
and much related information is available. However, virtually 
all of the available and commonly employed data and concepts 
pertain only to frequencies which are "high" in the present 
context. The engineer concerned with spacecraft NR must be 
aware of the limitations of the classical approach. (As a by- 
product, understanding the classical approach should give him a 
better insight into parallel approaches taken in this report.) 

"CLASSICAL ANALYSIS" 

Noise reduction is usually defined (in architectural 
acollstics) in terms of an arrangement like that sketched in 
Fig. 1, i,n which two acoustic spaces, a "source room" and a 

SOURCE ROOM RECEIVING ROOM 

PARTITION 

FIG. 1 TYPICAL SET-UP FOR MEASURING NR OF PARTITION 
15 
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"receiving room," are separated by a partition. If a sound 
generator in the source room produces a (space and time average) 

2 mean-square reverberant acoustic pressure pl, corresponding to 
2 which there results a mean-square pressure p2 in the receiving 

room, then the noise reduction of the partition is defined as 

NR= 10 log p2/p2 1 2 = Lpl - Lp2 

where Lb, with pref - 2 x 10 -4 microbar 

denoti<the pressure level in the i th room. 
afforded by the partition" 

Clearly, the "NR 
depends not only on the partition, 

but also on the acoustic absorption properties of the receiving 
room. 

An alternate common definition of NR equates the noise 
reduction to the "insertion loss" of the partition, i.e., to the 
reduction in the pressure level in the receiving room resulting 
from inserting the partition between the previously unseparated 
rooms. One may note that Eq. (1) defines NR as the pressure 
level difference between a source and a receiving space, with 
the partition in place, whereas the insertion loss is the dif- 
ference in the pressure levels observed in the receiving space 
before and after insertion of the partition. The insertion loss 
of a partition depends on the test conditions imposed on the 
source, in addition to partition and receiving room parameters. 

2 (For example, holding pl constant generally results in different 
source and receiver pressures than holding power radiated by the 
source constant.) 

One generally attempts to separate the contributions to NR 
made by the partitions from those made by the tes,t XXX. To 
this purpose one defines the transmission loss (TL) of a parti- 
tion as 

TL E 10 log (ninc/ntrans) (2) 

where Iiinc denotes the acoustic power incident on the partition 
from the source room side and IItrans that radiated by the 
partition into the receiving room. 

If the acoustic field in the source room is reverberant, 
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then llinc is related to the space-time mean-square 
pf ys (Ref. 5) 

r 'inc = Ap P;/~w 

pressure 

(3) 

where Ap denotes the partition area and pc the characteristic 
impedance of the medium. 

If one assumes that a fraction a of the power IItrans 
transmitted through the partition into the receiving room is 
absorbed at the walls of this room, then the power 
the reverberant acoustic field in this room is (1 - 
In the steady state, this power input must be equal to the power 
loss, which is equal to a times the power incident on the 
receiving room walls. The power balance equation for the 
receiving room is therefore 

ntrans (1 - a> = aAt ~;/4Pc (4) 

where At denotes the surface area of the receiving room. By 
combining Eqs. (1) through (4) one may obtain 

NR= TL + 10 log R/Ap 

where 

R= At a (1 - a)-1 (6) 

is called the "room constant" of the receiving room and accounts 
for the acoustic properties of that space. 

The absorption coefficient a is usually a fairly slowly 
varying function of frequency, tending to be rather low at low 
frequencies and increasing with frequency. In designing 
experimental test chambers one usually tries to keep a below 

. y;. 203, for spaces where good wall absorption is desired 
as broadcast studios) a values between 50 and 90% may be 

attained over the frequency range from 500 Hz to 2 kHz. 

The transmission loss of a partition structure Is often 
presumed to depend only on such 'intrinsic" structural 
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properties of the partition as mass per unit area, flexural 
rigidity, and loss factor. (Thus, it is often presumed that by 
doubling the partition area one doubles the transmitted power.) 
This assumption is obviously invalid under conditions where the 
measured TL is affected by panel geometry or area, e.g., at low 
frequencies (for panel wavelengths of the order of a partition 
edge dimension) where room and partition modes, as well as 
acoustic diffraction .effects, affect the transmitted power. 

The characteristic behavior of the transmission loss of 
panels, as indicated in Fig. 2, may be explained in terms of 
the flexural motions of the panel and of how these act in the 
radiation of sound. Because of the spatial distribution of 
exciting pressures over the panel, virtually all flexural modes 
are excited by the incident sound, even if this sound has energy 
in only a narrow band of frequencies. But all of the modes will 
not respond the same; modes whose resonance frequencies fall with- 
in the excitation band will, of course, tend to respond more 
strongly than others. In addition, all modes do not radiate 
sound with the same efficiency. Modes whose spatial scales 
(wavelengths) are greater than an acoustic wavelength radiate 
sound relatively efficiently, whereas modes with shorter wave- 
lengths radiate poorly (only about 1 to 10;; as well as long- 
wavelength modes). 

In studying the transmission loss of a given panel in a 
given frequency range, one thus looks first for modes which are 
both highly excited (i.e., resonant) and good radiators (i.e. 
which have spatial scales that exceed the acoustic wavelengthj. 
Such modes dominate- sound transmission, if they occur. Such 
-modes must have their resonances above the "critical frequency" 
(discussed below), and obviously can be excited resonantly only 
by excitation frequencies above this critical frequency. 

The critical frequency of a panel is that frequency at 
which the acoustic wavelength in the surrounding medium is equal 
to the wavelength of flexural waves on the panel. Recalling 
that the ratio of the acoustic to the flexural wavelength de- 
creases with increasing frequency (since the acoustic wavelength 
is inversely proportional to frequency, whereas the panel flexural 
wavelength varies inversely as the square-root of frequency), one 
notes that modes which resonate above the c:litical frequency have 
wavelengths shorter than acoustic waves at the modal resonance 
frequency, and hence radiate well when vibrating resonantly. On 
the other hand, modes whose resonances fall below the critical 
frequency radiate poorly when vibrating at resonance. 

For an excitation frequency band which lies well above the 
panel fundamental resonances, but below the panel critical 
frequency, it often occurs that the sound transmission is 
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dominated by the many low-frequency, long-wavelength modes. 
Although these modes are excited at frequencies which are much 
higher than their resonances, their wavelengths may be longer 
than the acoustic, so that they may radiate much better than 
the few resonantly excited modes (which may have wavelengths 
shorter than the acoustic). The responses of modes excited 
above their resonances are "mass-controlled," that is, like 
the high-frequency response of a spring-mass system, the modal 
responses here are inversely proportional to the square of 
frequency and to modal mass. In building partitions it often 

turns out that such mass-controlled modes dominate the transmis- 
sion loss behavior in the frequency regions of interest; this 
fact is the basis for the famous "mass law" (Ref. 6) of TL 
(which corresponds to that portion of Fig. 2 which rises at 20 
dB/decade). Also, the dominance of the sound radiated by non- 
resonantly excited modes explains why the addition of structural 
damping (which essentially reduces only the responses of the 
resonantly excited modes) has no appreciable effect on the TL 
of building panels even though such damping may result in marked 
reductions of the panel vibration levels. 

Now it is useful to return once more to Fig. 2, and to 
interpret the characteristics of a typical transmission loss 
curve in terms of the previously discussed phenomena. Below 
the lowest panel resonance, the panel response (and thus the NR) 
are controlled only by the panel stiffness. The portion of the 
TL curve below the lowest panel resonance is fictious, since the 
TL concept does not apply for such frequencies. At and near the 
few lowest panel resonances the TL is small, because of the large 
responses of the resonant modes. At somewhat higher frequencies, 
up to about an octave below the coincidence frequency, one 
encounters the I'mass-law" region, in which sound radiated from 
nonresonantly vibrating but well-radiating modes dominates 
transmission. 

Above the critical frequency the transmission loss decreases 
once more (from mass-law conditions) because of the presence of 
resonantly responding modes with good radiation efficiencies. 
Because of the effect of damping on resonant response, increased 
damping generally results in increased TL in this region. The 
"plateau, 11 shown dashed in the figure; may serve as an engineering 
approximation to the average behavior in this fre uency range. 
An increase at a rate somewhat greater than 20 dB decade 3 is 
usually observed at frequencies about an octave above the 
critical, as modal resonances are increasingly damped out and the 
curve tends back to the mass-law line. 
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CONCLUSIONS 

It has been pointed out that classical NR and TL 
alculations apply only under certain conditions, most of 
lhich generally do not apply to spacecraft exposed to low- 
'requency sound. For example, calculation of the NR by 
:q. (5) involves the assumption of diffuse reverberant acoustic 
'ields in the source and receiving spaces, and such fields can 
le achieved only if very many acoustic modes of these spaces 
larticipate in the energy exchange process. Hence, this 
ssumption cannot be met at or below the lowest-order acoustic 
aesonances of a spacecraft 'receiving space." 

Similarly, classical (particularly mass-law) TL calculations 
.pply only for panels !vhose dimensions encompass more than a few 
.coustic wavelengths. Hence these calculations are inappropriate 
'or low frequencies, at which the acoustic wavelengths are longer 
.han, or of the order of, typical spacecraft or spacecraft panel 
iinensions. 
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CHAPTER II 

A-SURVEY OF LOW-FREQUENCY PRESSURE TRANSMISSION 

INTRODUCTION 

In the previous chapter the "classical" procedures for 
calculating noise reduction in architectural acoustics were 
reviewed, and the conclusion was reached that these methods are 
inappropriate for the calculation of spacecraft noise reduction 
at low frequencies. The purpose of this chapter is to suggest 
the major mechanical and acoustical mechanisms that control 
the transmission of sound pressure in spacecraft at low frequen- 
cies, and to outline the calculations necessary for the prediction 
of low-frequency NR. 

We consider first some previous experiments and theoretical 
calculations of pressure transmission in a small rectangular box 
with flexible walls. It is found that particular types of 
acoustical-mechanical behavior occur in specific frequency ranges 
and that similar kinds of behavior will also occur in spacecraft. 
However, the geometry and structure of spacecraft in general, and 
of the Apollo CM in particular, differ in important ways from 
those of the box, and therefore the analysis of spacecraft must 
be done differently. This review of previous studies and 
consideration of spacecraft configurations suggests a series of 
specific technical analyses required for the prediction of low- 
frequency pressure transmission; these analyses will be described 
in the subsequent chapters. 

THEORETICAL ANALYSIS 

A theoretical analysis of a rectangular box consisting of 
five rigid walls and a single flexible wall has been carried out 
previously (Ref. 7). The box is considered to be exposed to a 
reverberant sound field, and its noise reduction is defined as 
the difference in sound pressure levels at a given position 
within the box, with and without the presence of the box. The 
acoustical critical frequency of the flexible panel is assumed 
to be an octave or so above the lowest acoustic resonance 
frequency of the enclosed space, and the lowest panel resonance 
frequency is taken to be lower than this resonance frequency. 

At frequencies above the first acoustic resonance both the 
panel and the contained acoustic space are resonant, and the 
panel transmission can be described as outlined in Chapter I. 
The calculated noise reduction of a particular box for these 
frequencies is shown in the "high-frequency' range of Fig. 3. 
Results of calculations for forced (mass-law) transmission 
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and resonant-panel transmission are also given. For this 
panel, it occurred that the resonant transmission dominated. 
In this "high-frequency" range, therefore, both the structural 
loss factor of the panel and the acoustical absorption coeffi- 
cient of the contained volume affect the level of noise reduc- 
tion that is obtained. 

Below the first acoustic resonance the enclosed volume 
behaves like an acoustic compliance, and pressure is generated 
within the volume principally due to net volume displacement 
produced by the flexible panel. If there are structural 
resonances in this frequent range (and there were for the box 
considered in the reference T , then some of these resonances may 
cause volume displacement, and therefore increased pressure, 
over limited frequency intervals. The frequency interval over 
which volume-pumping resonances will occur is termed the "mid- 
frequency' range in Fig. 3. This interval usually lies between 
the first mechanical resonance of the panel and the lowest 
acoustic resonance frequency. In the "mid-frequency" range the 
noise reduction is dependent upon the structural damping of 
the panel, but is independent of the acoustic absorption 
within the enclosed cavity. The only parameters of an acoustic 
cavity which are important in this range are those which affect 
the cavity's acoustic compliance, namely, cavity volume and gas 
pressure. 

If relatively wide bandwidths of acoustic noise are used, 
then several volume-displacing modes of the panel may contribute 
simultaneously to the noise reduction. With this assumption, 
the NR is bandwidth-independent, and behaves as the 'average" NR 
shown in Fig. 3. If the bandwidth is narrower, then only one 
volume-displacing mode at a time may be excited, and the NR may 
be bandwidth-dependent. The result of the calculation for a 
particular box for an 8% band (one-tenth octave) is shown in 
Fig. 3 labelled "single-mode NR, 8% bands." 

Finally, at frequencies below the lowest mechanical and 
acoustical resonances, both the flexible panel and the contained 
volume behave as mechanical compliances. The mechanical com- 
pliance of the panel depends on its size, flexural rigidity and 
mounting. The acoustic compliance depends on the contained 
volume and pressure. It is essentially the ratio of these 
compliances that controls the low-frequency pressure transmission. 
The panel compliance in the reference was computed for both 
simply supported and clamped-edge mountings. These two arrange- 
ments result in panel compliancea differing by a factor of 3 for 
this configuration. The noise reduction in this "low-frequency" 
regime is independent of frequency, structural damping, and 
acoustic absorption. The results of the calculation of NR for 
this regime are also shown in Fig. 3. 
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We define as the "low-frequency" region of NR for space- 
craft essentially the combination of the 'low-frequency" and the 
"mid-frequency" regimes (i.e., the frequency range below the 
first acoustic resonance of the contained volume). 

A theoretical and experimental analysis of the NR of boxes 
with six flexible sides has been presented by Eichler (Ref. 8). 
The general form of Eichler's calculations is similar to that 
above, but the treatment is refined by accounting for the energy 
reradiated by the enclosed cavity back into the surrounding room. 
Some experimental results for an aluminum box of l/16 in. wall 
thickness, 
in Fig. 4. 

having dimensions roughly 12 x 18 x 1.6 in., are shown 
The lowest mechanical resonance occurs at approxi- 

mately 60 Hz and the first acoustic resonance of the interior 
volume at about 400.H~. Displayed, along with the experimental 
data, are the theoretical results for noise reduction in the 
compliance-controlled "low-frequency" region, and "average" and 
"lower bound" calculations for the noise reduction in the "mid- 
frequency" region. 

CONCLUSIONS 

Although the rectangular box is geometrically and dynamically 
different from the axisymmetric spacecraft shapes to which we are 
accustomed, the analyses described above shed considerable light 
on the procedures one should follow in developing a theory of NR. 
Clearly, the acoustic compliance for slow pressure changes on 
the shell is an important parameter in predicting its very-low- 
frequency noise reduction. Accordingly, in Chapter III general 
procedures will be outlined for determining the quasi-static 
acoustic compliance of axisymmetric shells. 

The axial symmetry of spacecraft has another important 
kinematic result. It requires that mode shape functions be of 
the form of sin ma, cos m@, where @ is the azimuthal angle and m 
is an integer. For m # 0 the net volume displacement of such 
modes vanishes. For m = 0 the membrane stresses in the shell 
cause these modes to resonate at comparatively high frequencies, 
well above the range of 'low frequencies' which are of concern 
in this report. 

In the discussion of box NR the important effect of volume- 
pumping structural modes on the noise reduction was clearly 
established. The absence of low-frequency volume-pumping modes 
for homogeneous axisymmetric shells can cause the quasi-static 
compliance-controlled NR behavior to extend up to the first 
acoustical resonance. However, volume-pumping structural 
resonances may be introduced by major structural discontinuities 
or shell elements that allow m = 0 resonances to occur in the 
low-frequency region. We shall see the effect of this behavior 
in subsequent discussions. 
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The studies of rectangular boxes do not anticipate some 
important acoustical and mechanical effects in spacecraft like 
the Apollo CM. While some of these effects are related to the 
double-shell construction of the Apollo CM, others are due to 
the venting system, the use of segmented sandwich construction, 
and the effects of materials and equipment that are placed 
within the acoustic cavities. In subsequent chapters we deal 
with many of these effects in some detail and try to recommend 
remedial actions that can be taken when such effects cause 
abnormally low noise reduction in important frequency ranges. 
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CHAPTER III 

QUASI-STATIC PRESSURE TRANSMISSION OF SHELLS 

INTRODUCTION 

In this chapter we develop the theory of pressure transmis- 
sion in single- and double-walled elastic shells. The noise 
reduction (NR) can be expressed in terms of shell and volume 
compliances. 

A major portion of this chapter is devoted to finding the 
acoustic compliance of elastic shells, and the proper combina- 
tion of these compliance elements to represent a spacecraft 
structure. We discuss the principal forms of elastic deforma- 
tions of the shell - membrane and flexural - and the conditions 
under which one or the other of these will dominate. 

With this background, it is then possible to predict the 
low-frequency NR of spacecraft. The chapter is concluded with 
a calculation of the NR of the Apollo Command Module (CM). 

PRELIMINARY REMARKS 

Noise Reduction 

If a pressure p, is applied quasi-statically on the exterior 
of a closed gas-filled elastic shell structure which is initially 
at equilibrium, then this structure will deflect, the volume Vcon 
contained in it will decrease by an amount V, and the pressure in 
the interior will increase by an amount pi. According to the 
well-known ideal gas laws, this pressure increase is related to 
the volume change according to (Ref. 9) 

pi V V con 
- = y Vcon ; ' = pi yp,,, E pi 'con P con 

(7) 

where P con denotes the pressure of the gas contained within the 
structure before the external pressure is applied and y denotes 
the ratio of specific heats of the enclosed gas (Ref. 10). Cc,, 
is defined as the acoustic compliance of the contained volume. 
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The volume decrease V of an elastic shell is proportional 
to the applied pressure difference. Thus one may write 

v = C(P, - Pi) (8) 

where C is defined as the acoustic compliance of the shell and 
may be computed from its elastic deformations. 

By combining Eqs 
cdn be expreasdz)as 

and (8) one finds that the ratio of 
Po IJo Pi ' 

PO 
C 

-=l+AgE 
pi 

(9) 

If p, denotes the amplitude of the (slowly) oscillating external 
acoustic pressure, and pi a similar interior quantity, then the 
NR (in decibels) will be 20 loglo(po/p4). For low-frequency 
acoustic excitation (i.e., below any 
resonance), one may calculate the NR 
from 

v;lume-displacing structural 
of a given elastic shell 

m(dB) 
C con 

+ c 1 
These results can also be obtained from the equivalent circuit 
representation in Fig. 5. In this diagram, volume velocity is 
the 'flow' quantity, and pressure fluctuation (relative to 
ambient) is the "drop" or "potential" quantity. 

PO 
FIG.5 EQUIVALENT ACOUSTICAL CIRCUIT FOR 

SHELL-ENCLOSED VOLUME 
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The subsequent sections deal in some detail with the 
analytical determination of the volume/pressure proportionality 
factor C for some often-encountered shells and for some composites 
typical of the Apollo Command Module. 

Plate and Shell Rigidities 

The subsequent analyses are carried out in relatively general 
terms, involving only the dimensions of the shells and their ex- 
tensional and flexural rigidities (per unit 'length). The results 
are thus equally applicable to homogeneous and to sandwich shells. 

The extensional stiffness of a shell per unit edge length 
may be expressed as EA, where E denotes Youn Is modulus and A 
the cross-section area (per unit edge length 7 that is effective 
in extension. Thus, with the dimensions defined in Fig. 6, 

H for homogeneous shells 
A z (11) 

2t for sandwich shells 

HOMOGENEOUS 
PANEL 

t,fA 

SANDWICH 
PANEL 

tfB 

t= 1121 tfA+tfB) 

FIG.6 SHELL SECTION DIMENSIONS 
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Here, and subsequently, the core of a sandwich structure is 
assumed to have no extensional stiffness and to be extremely 
rigid in shear. 

The flexural rigidity D = EI of a plate or shell is found 
from computing the moment of inertia of the cross section, I, 

EH3/12 for homogeneous shells 
D =: 

Eh2/2 for sandwich shells* 
(12) 

where the cross-section dimensions H, h, t again are those de- 
fined in Fig. 6. 

CIRCULAR PLATES 

The displacement y of an elastic circular flat plate 
simply supported at its circumference and subject to a uniform 
pressure p (Fig. 7) is given by the expression (Ref. 11) 

Y 
4 -5+v 

=&& l+v- 1 
2 (g)(g)'+ (a>" ] O-3) 

FIG.7 FLAT CIRCULAR PLATE WITH 
SIMPLY SUPPORTED CIRCUMFERENCE 
SUBJECT TO UNlFORM PRESSURE 

* This expression is valid only for shells With nearly equal skins. 
A much more complex (but easily derived) relation holds for shells 
with grossly unequal skins. 
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!Ihe displacement of a similar plate, but with clamped circumfer- 
ence, is given by (Ref. 12) 

(14) 

From these expressions one may readily calculate the volume 
V displaced as the plate deforms: 

J 
a 

v = 2-m y(r) r dr 
0 

One finds 

[ cw = 5.6 for simply supported edge 

1 for clamped edge 

where the above approximate numerical value is obtained for a 
typical Poisson's ratio of v = 0.3. 

Clearly, the support conditions at the circumference play 
an important role in establishing the volume displacement due to 
flexural motion, and they should be taken into account as real- 
istically as possible in any practical calculation. 

CYLINDRICAL SHELLS 

A cylindrical shell (Fig. 8) subject to a uniform internal 
pressure p increases in radius by an amount 6, = pa2/EA if no 
axial stresses are applied to it at its edges and if the edges 
are also unrestrained otherwise (Ref. 13). If the internal 
pressure acts also on end-caps and thus causes axial tension in 
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FIG.8 CYLINDRICAL SHELL SUBJECT 
TO INTERNAL PRESSURE 

the shell, then the radial expansion is reduced due to the Poisson 
effect and is given by 6 = 6,(1 - v/2). 

The volume displacement due to "membrane action" of the 
shell for the end-capped case thus is given by 

3 = 27-a~ 6,(1 - v/2) = 2741 - v/2) P a31@ (16) 

However, the axial loads also cause the shell to increase in 
length by an amount AL = p(1 - v)aL/2EA, which results in an 
additional volume displacement, 

v2 = 7ra2 AL = 7ra3L(l - v)p/EA (17) 

Thus, the total volume displacement of an end-capped cylindrical 
shell due to membrane action is given by 

v= v,+v,=4p(&29 WV 
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Radial constraints imposed on the edges of the cylindrical 
shell reduce the deflections, and thus the volume displacement. 
In a later section of this chapter, pp. U-46, it is shown that 
simple supports and rigid clamps at the edges have the effect of 
multiplying the above Vl volume contribution by a factor F, 
where 

1-p sinh PL + sin BL 
L(cosh PL + cos PL) for simply supported edges. 

(19) 
2(cosh PL - cos PL) for clamped 

1 - PL(sinh PL + sin VL) 
edges 

F= 

The parameter I3 is defined by 

B4 = EA/&a2D 

and BL is a measure of the membrane rigidity 
flexural rigidity. From Eqs. (11) and (12), 

I 

1.285/h& for homogeneous 

B z 

(20) 

relative to the 

shells 

(21) 

1 w= for sandwich shells 

;;;i;g rox+mate,numerical 
B 

coefficient above corresponds to the 
Poisson s ratio value of 0.3. 

It is of interest to note that, for PL > 3, Eq. (19) reduces 
to l- (PLP for simply supported edges 

Fz 
l- 2(8L)'l for clamped edges 

Thus, for @L > 20, F differs from unity by less than 10% for all 
boundary conditions; i.e., then flexure has no appreciable effect 
on the shell displacement volume. 
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MEMBRANE DEFORMATIONS OF SHELLS OF REVOLUTION 

General Relations 

As evident from this analysis of cylindrical shells, the 
deformations due to edge constraints often have relatively little 
effect on the total volume displacement produced by an applied 
pressure. Except for very "short" shells, the volume displace- 
ment is almost entirely associated with membrane deformations of 
the shell; the flexural deformations associated with the edge 
conditions may then be neglected. 

It is known that for conical- or spherical-segment shells 
the effects of edge loads are attenuated more rapidly (with 
distance alon 
(Refs. 14, 7 

the shell) than for similar cylindrical shells 
15 c Thus, one may hope to obtain reasonable approxima- 

tions to the 'volume displacement" of non-cylindrical shells by 
neglecting flexure effects, consideration of which would lead 
generally to lengthy and complicated calculations. 

Consider a general shell of revolution subject to axially 
symmetrical loading. Let r. denote the radial distance measured 
from the shell axis to a generic point A on the shell mid-surface, 
and let r1 denote the radius of curvature of this surface measured 
at A in a plane containing the-shell axis (Fig. 9). One finds 
from Timoshenko (Ref. 16) that one may write the following 

FIG.9 GENERAL SHELL OF REVOLUTION 
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expressions for the normal displacement w and the tangential 
displacement v of the shell: 

r 
w = V Cot 9 + $.A &, 9 (Ne - v 4) 

v = sin @ [ c+Ewq 

EA.f($) = N+ rl + sInrz 

Here C is a constant of integration, which must be evaluated from 
boundary conditions, and NQ and No denote the membrane (tension) 
forces (per unit length along the surface) acting respectively in 
the "v" direction of Fig. 9 and perpendicular to the plane of 
this figure. 

The membrane forces can be evaluated directly from equili- 
brium conditions. For a loading consisting of a pressure p (here 
taken as positive in the positive w direction of Fig. g), one 
obtains (Ref. 17) 

Ne = - zjg r" (p+2) 

1 (24) 

s 

Q 

N@ = - r. sin # P r. rl COS 9 da 
0 

J 

Thus, one may determine the volume displaced by the membrane 
deformation of the shell (produced by an applied pressure p) by 
calculating N@, NG from Eq. (24), then substituting the results 
into Eq. (23) to find w, adjusting C to satisfy the appropriate 
boundary condition, then integrating w over the entire shell 
surface. 
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Spherical Segment 

For the special case of a spherical shell (or a portion 
thereof), rl = R and r. = R sin 9, where R denotes the radius of 
the sphere. Then 

NQ = - p R/2 , Ne = P R/2 

r(s) = 0 

V = C sin @ 

w = P& (1 - v) + c cos @ 

(25) 

If the tangential displacement is prescribed to vanish at some 
location other than at $ = 0, then C = 0, v = 0 and the above 
relation for w is also correspondingly reduced. 

Thus, the volume displaced by membrane deflection of a 
spherical segment of height Ho is given by 

v= .* (1 - v) (26) 

if v = 0, where 

S = 27r R Ho (27) 

denotes the surface area of the spherical segment. 

The relations presented here may also be readily applied to 
shells which are toroidal segments, or to the numerical analysis 
of any given shell of revolution. However, they are not directly 
suited for dealing with conical shells, since for such shells the 
radius of curvature rl is infinite. 
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Conical Shell 

For a shell whose middle surface is a full or frustrated 
right circular cone (Fig. 10) one finds that 

Na = - p rJ2 sin 9 (28) 

if the top of the frustum is closed off in any manner. This rela- tion may be obtained directly from equilibrium considerations. 

FIG.10 FRUSTRATED CONICAL SHELL 

From Eq. (24) one also obtains 

(29) Ne = - P ro/sin @ 

since here r1 is infinite. 

The stress-strain relations (Ref. 18) are 
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e*EA=N 9 9 -VN 'e 

from 

e*EA=N 8 8 -VN Q 

The volume displacement of a conical shell can be found 
consideration of the volume element shown in Fig. 11. 

(30) 

I 

FI’G. 11 VOLUME ELEMENTS OF AX I SYMMETRIC SHELL 

When a pressure differential is applied to the conical 
shell, the volume enclosed by the shell element of height dy 
decreases from mzdy to xrA2dy, or by an amount 

dV '2 = v(ro - r,') dy (31) 

If the circumferential strain is e8, then the new radius rb is 
'2 2 (1 + ee) times the initial radius ro, and r. - r. = ro2e 8 if 

higher-order terms in e8 are neglected. 
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The total volume displacement between the two coordinates 
Y = Y,J Yb is given by 

'b yb 
v= s dV = 27~ s r: ee dy 

ya ya 

From Eqs. (28) through (30), 

p r. 
'0 = - EA sin 4 (' - V2> 

!inus, substituting r. = y cot @, 

c= + ,q.g& (i - v/2) 

(33) 

(34) 

This result applies to cases where the ends y,, yb do not move. 
In cases where the ends do move, the volume displacements due 
to the end motions must also be taken into account. 

PLATE TERMINATING LONG CYLINDRICAL SHELL 

In view of the important effect that edge support conditions 
have on the deformations of circular plates and on the associated 
volume displacement, it is of interest to consider in some more 
detail a plate whose circumference is connected to a cylindrical 
shell. 

Such a plate-plus-shell composite structure may be analyzed 
by calculating the deformations of the individual component 
structures produced by the applied pressures and the interaction 
loads shown in Fig. 12. With the conventions indicated in that 
figure one may write the plate and shell edge rotations ep and 
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er = mPeM + Qp p 

8, = mc d+q, P 
(35) 

FIG. 12 DISCONTINUITY ANALYSIS OF PLATE 
TERMINATING LONG CYWNDRICAL SHELL 

The first of these relations represents the plate edge rotation 
produced by the edge moment M and an external pressure p; the 
second represents a similarly produced cylindrical shell edge 
rotation. The coefficients m P and qp are constants that depend 
on the plate properties; mc and q, similarly depend only on the 
shell properties. (The plate deformation is assumed to be 
unaffected by the in-plane load P. The radial shell deformation 
u is assumed to be unaffected by the shell tension load Q, and 
U = 0 is assumed at the junction, 
deformation of the plate.) 

corresponding to zero radial 
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and from Timoshenko's discussion of cylindrical 
one may obtain 

From expressions given by (Ref. 19) one may determine 

a3 a 
qp = ‘tr Dp'l + vp) ' "p = Dp(l+ vpJ- (36) 

shells (Ref. 20) 

'za:(l->), rnc=+& cl, = - Jr!jA (37) 

where subscripts p and c have been appended to the previously 
introduced symbols in order to distinguish between those pertaln- 
ing to the plate and those referring to the cylindrical shell. 

For the case where the plate and shell edges are rigidly 
joined to each other one may set ep = 8, and obtain 

=, U (38) 

The volume Vm displaced by the circular plate due only to 
application of an edge moment M may be calculated from the 
appropriate deflection equation (Ref. 19) to be given by 

4 
vm = = a +Mv 

4 DP(l P7 
(39) 
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whereas the volume displaced due only to an applied pressure is 
given by the first of Eqs. (15). The net volume displaced by the 
plate due to both the applied pressure and the edge moment 
supplied by the cylindrical shell is found to be given by 

(40) 

in view of Eqs. (33), (39) and (18). Here U denotes the ratio 
given by Eq. (38), and the coefficient of the bracketed term may 
be recognized as the volume displacement of a simply supported 
plate. 

EFFECT OF EDGE CONSTRAINTS ON VOLUME DISPLACEMENT 
OF CYLINDRICAL SHELLS 

The radial displacement w of a cylindrical shell (Fig. 8) 
is given by an expression of the form (Ref. 13) 

w = -6 + Cl sin @x sinh Bx + C2 cos BX cash BX (41) 

if terms that are anti-symmetric with respect to the middle of the 
cylinder are discarded (in view of the symmetry of the solutions 
required here). Here 6 denotes the radial membrane expansion, as 
discussed in the paragraph preceding Eq. (16), and B is the 
relative stiffness parameter defined in Eq. (20). The constants 
Cl and C, may be evaluated from the conditions prescribed at the 
boundaries. 

For simpl 
P 

supported edges the boundary conditions are 
w(m) = w'(L 2) = 0, for which one finds (Ref. 13): 

cl Bs = 26 sinh c1 sin a 

c2 Bs = 26 cash a cos o 

BS f cos BL + cash @L 
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There 

(43) 

GELS been Introduced for the sake of convenience. For clamped 
dges, for which the boundary conditions are w(L/2) =,w'(L/2) = 0, 
me similarly obtains: 

C1*Bc - 26 (cash a sin a - sinh a cos a) 

C21 Bc = 26 (cash ti sin a + sinh a cos a) 

I 

(44) 

BC 
= sin @L + sinh BL 

The volume V displaced may be obtained from Eq. (41) as 

c2 
-m( cash a sin a + sinh a cos a) 

3 

, 
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Substitution of Eqs. (42) and (44) into (45) permits one to write 

V = (27iSL)mF 

where 

I 
l-pdmh PL+ sin P 

(cash PL + cos 

F = 

l- 

for simply supported edges 

(46) 

for clamped edges 

This result has been quoted previously, as Eq. (19). 

APPLICATION TO APOLLO CM 

This section presents results of our efforts to estimate 
the low-frequency NR of the Apollo CM. Our model of the exterior 
sound-pressure field at low frequencies is one of simple spatially 
uniform compression, A simplified diagram of the CM shell system 
is shown in Fig. 13. It consists of separate outer and inner 
shells, mounted on a cylindrical fairing to the service module 
(SM) l 

Our analysis procedure consists of dividing the shells 
into simple geometrical shapes (frustrated cones, cylinders, 
spherical segments;planes), using the previously presented 
results to calculate the acoustical compliances (ratio of volume 
displacement to pressure differential) due to each structural 
segment, and then to add all effects in order to obtain the 
compliance of the complete shell. 

After we have computed the acoustic compliances, we combine 
them appropriately to determine the net NR of the total structure, 
i.e., the ratio of the external acoustic pressure to that in the 
space within the inner shell. By this process we are able to 
single out those structural elements which result in the least 
NR. Once these "weak links" have been identified, one should be 
able to suggest ways to increase the system NR if this seems 
desirable. 
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FIG. 13 SIMPL.lFI.ED SKETCH OF MAJOR STRUCTURAL 
ELEMENTS OF C'OMMAND MODULE (CM) STRUCTURE 



Description of the Structure 

General Features.-The two axisymmetric shells that make up 
the basic structure of the CM are formed from metal sandwich 
panels. Stainless steel is used for the outer shell, and 
aluminum for the inner one. The thickness and density of the 
sandwich core and the facing sheets for the sandwich vary along 
the axis of the module. There are structural irregularities 
on the surface of the shells due to strengthening members, 
hatches, compartments, etc. 

The volume between the two shells has added thermal insula- 
tion in the form of blankets of "Q-felt," a glass-fiber blanket 
covered with aluminum foil. The outer surface of the CM is 
covered with an ablative coating of varying thickness. (The 
acoustical and mechanical effects of the Q-felt and the ablative 
coating will not be considered here.) The volume within the 
inner shell is partially filled with equipment and personnel. 

Description of Outer Shell. -For the purposes of our analysis, 
the outer shell, shown in Fig. 14, will be treated as a right 
circular cone with a generating angle of 30' and a base radius 
of 72 in., connected to a base which is a spherical segment 
having a radius of curvature of 180 in. The dimensions of the 
sandwich panels are given in Table I, in terms of the notation 
defined in Fig. 6. 

The upper part of the conical section 1 (see Fig. 14) 
consists of a stainless steel sandwich made of 8-mil facing 
plates on an 0.592-in. thick core having a density of 5.7 lb/ 
cu ft. The lower part 2 has the same facing skins but a core 
0.51 in. thick'with a density of 5.4 lb/cu ft. The spherical 
base is made from a stainless steel sandwich with 61-mil skins 
and a 2-in. core with a density of 5.4 lb/cu ft. 

Description of Inner Shell .-We have divided the inner shell 
of the CM into six structural elements: upper hatch cover 4, 
upper hatch cylinder 5, ledge 6, cone 7, lower cylinder 8 (actually 
a frustrated cone) and spherical base 9. These surfaces are not 
structurally homogeneous since they all, and particularly the 
cone 7, have hatches, windows, structural reinforcements, conduits, 
etc. 

The dimensions of the inner shell structural elements are 
shown in Fig. 15. Except for the hatch cover 4, all dimensions 
and sandwich specifications have been taken from NASA 
drawings. On the base 9 there is a gradation in core density; 
the core sandwich material is lighter in the center and becomes 
progressively more dense toward the periphery. 
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TABLE I 

DIMENSIONS AND MATERIALS OF SANDWICH PANELS 
SHOWN IN FIG. 13 

Section Material 
Core 

Thickness 
t$n.) 

0.592 898 8 0.600 

0.50 898 8 0.508 
2.0 68,68 68 2.068 

1.18 20,20 20 1.20 
0.25 10,lO 10 0.26 
0.72 16,22 19 0.739 
0.92 20,20 20 0.94 

o-75 16,16 16 0.766 

1.50 33,33 33 1.533 

Thickness of 
Inner and 

Outer Skins 
tfA, tfB 

(10B3 in.) 

h=tc+t 



-_------ -- 

maw ,,081 

FIG.14 MAJOR STRUCTURAL SECTIONS OF OUTER SHEL 
(STAINLESS STEEL SANDWICH) 
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Properties of Contained Volumes.-The inner shell contains a 
volume of approximately 4.75 x lo5 cu in., or about 275 cu ft. 
If we assume that roughly one-third of this is occupied by 
equipment and personnel, we estimate the free volume to be 
3 x 105 cu in. 

The acoustic compliance of a contained free volume V is 
given in Eq. (7). For the volume contained by the inner shell, 
the acoustic compliance is 

cl2 = 3 x 105/20 = 1.5 x lo4 (in)3/psi (47) 

The total volume enclosed by the outer shell is approximately 
8 x 10~ cu in. If we deduct from this the inner volume, we have 
left 3.25 x lo5 cu in. Further, subtracting 0.25 x 105 cu in., 
the estimated volume of the inner shell wall structure plus the 
rest of the volume-occupying elements in the space contained 
between the shells, leaves 3 x 105 cu in. for the contained 
volume. If the pressure variations in this space are adiabatic 
its compliance is given by (7). However, because of the presence 
of the Q-felt, the pressure variations are likely to be more 
nearly isothermal. The compliance then is (Ref. 10) 

cl1 = = 2 x 104 '&tn' (isothermal) (48) 

PO denotes the average (static) pressure in the space. 

The temperature and density assumed for the air in the 
Interior volumes are those at launch. If the average pressure 
PO is reduced, the acoustic compliance of the volume is increased, 
but the mechanical compliances are not changed, since the struc- 
tural mechanics are not significantly affected by ambient 
pressure. The effect of reduced pressure PO thus is to increase 
the NR of the structure. 

Other Noise-Transmitting Elements.-In addition to the 
previously discussed major elements which affect the acoustic 
transmission, elements which form a "mechanical bridge" between 
the two shells, i.e., which facilitate the transmission of 
vibrations and sound in localized regions, can influence the 
NR significantly. The assessment of the effect on NR of electrica 
and service connections between the shells will be aided by a 
better understanding of the structural dynamics. We shall defer 
discussion of bridging elements to chapter VI. 
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Dynamics of Structure 

In this section we review those aspects of the dynamical 
behavior of the structure shown in Fig. 13 which are pertinent 
to the pressure transmission characteristics of that structure. 
We concentrate on the quasi-static "forced" motion of the 
mechanical structure and the acoustic spaces. The resonant 
vibrations of the structure and/or the acoustic spaces will be 
discussed later. 

Quasi-Static or 'Forced" Motion of Shells.-Cur investiga- - - tions in Chapter II indicated that a substantial portion of low- 
frequency noise within the CM will be due to forced, nonresonant 
response of the inner and outer shells and the connecting air 
space. The nature of the motion will be different from that of 
the flat wall discussed in Chapter I. Since the volume-displacing 
modes of cylinders, for example, occur at or near the "ring 
resonance' frequency, these modes which couple well to the sound 
field generally will resonate above the frequency range of interest. 
In contrast to the wall transmmn, which has a mass-controlled 
response, the forced-wave transmission for axisymmetric shells 
is stiffness-controlled. We evaluate the volume displacement 
of the shells, therefore, by quasi-static calculat&ons of 
deflection due to a constant pressure differential. Resonance 
effects will be considered in Chapter IV. 

The quasi-static volume displacements of several elementary 
shell structures have been analyzed previously. In order to 
obtain the total volume deflection of the inner shell of the CM, 
we must know the pressure differential between the interspace 
volume 11 and the contained volume 12. In order to obtain the 
pressure in 11, we must know the difference in the volume 
deflections of the inner and outer shells. In this section we 
shall derive these parameters. 

Acoustic Compliance of Inner Shell.-The structural elements 
of the inner shell, as illustrated in Fig. 15, will now be con- 
sidered separately as acoustic compliance elements. The 
cylindrical hatch-5 was described above under Description of 
Inner Shell. From Eq. (21) 

@L=L= 33 
4-z 4(15)(.26) 

= 16.7 (49) 
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Since, as previously discussed, a large value of @L indicates 
that flexural effects are relatively unimportant, one may here 
estimate the volume displacement of the shell on the basis of 
only Its membrane deflection. From Eq. (18), the ratio of 
volume displacement to pressure differential for this cylindrical 
shell then is 

3 
c5 = g = +& (5/z - 2~) 

I 
(50) =‘$$f$7 (lo9) = 3.33 cu in./psi 

The hatch cover 4 and the ledge 6 may be treated together 
as a single flat circular plate with a radius of 35.6 in. An 
error in volume displacement may 'be expected in this treatment, 
because the boundary conditions on the inner edge of ledge 6 
and on the outer edge of the cover 4 are not properly represented. 
However, the error is thought to be relatively unimportant and 
not to warrant the additional complications involved in more 
exact calculations. From Eqs. (15) and (12), the compliance 
for the cover and ledge combination is found to be 

‘4,6 = 1,6 (5.6) = (5.6) -& 
(51) 

= g6 
~(35.6)~ 

lo'(o.74)2(1.9)10- 
z (5.6) = (5.6)(6.3)a102 cu in./psi 

In the 
if the 

foregoing relation the factor of 5.6 should be included 
plate edges are supported; it should be omitted if they - are clamped. In either event, the plate compliance C4,6 is 

substantially larger than the shell compliance C 5’ 
and the 

inner volume compliance C12, Eq. (47), is greater than the 
plate compliance. 
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The conical section 7 will be membrane-controlled if 
$sa>>l, where (Refs. 14, 15) 

q4 ~ EA sin*@ 
S 4a*D 

(52) 

and a is the radius of the base of the conical section. For 
section 7 

$,a = $ ( 

We conclude that this section will act as a membrane. The 

sin $I)~'* = [ j-@&h ]" X 8.5 

acoustical compliance of the conical section is found from 
ml. (341, 

c72&+--&y [($)4 -11 

(53) 

(54) 

with b/a = 1.69, a = 35.6 in., @ = 60', A = 16 x 10m3 in., 
E = 107 psi, and v = 0.3, to be 

c7 = 190 cu in./psi (55) 

If we treat section 8 as a cylinder, we find its compliance 
from Eq. (50) to be 

$3 = r(60)3(*9) (1.9) = 
2(10~)(1.6 x lo'*) 

1.17 x lo* cu in./psl (56) 

a value which is fairly close to C 
7' 

The spherical base has a membrane compliance given by 
3 TR Ho 

cg = x (1 - v) (57) 
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where R is the radius of curvature and Ho is the height of the 
spherical segment. 
9.7 in., 

If R = 180 in., t = 0.033 in., and Ho = 

cg = vr(1.8)3(g.7)d(o.7) 
2 (3.3) lo-* lo-( 

= 1.89 x lo* cu in./psi (58) 

We can get an estimate of the validity of this membrane 
result by appl ing the criterion for a cone, as stated just 
before Eq. (5275. We could use an average value of 
a*sin*@. Rut instead, we merely note that 

($sa)4 4 (s%)' sin* @max = (g)' (0.16) = 256 (59) 

where amax = 60 in. and @max = 24'. If we correct this upper 
bound value by factors of (l/3)* for averages over sin20 and 
a*, we find Jl,a = 2.5, which indicates that membrane stiffness 
will indeed dominate. 

It appears that the ledge structure 6 is the most compliant 
part of the internal shell structure. 

Acoustic Compliance of Cuter Shell.-Referring to Fig. 14, 
we note that there is a break in the structure and different 
sandwich constructions are used for sections 1 and 2. However, 
the volume-displacing membrane deformation is governed by the 
facing thickness "t:' and this is continuous. We therefore 
calculate the shell compliance for sections 1 and 2 as a single 
element. 
Eq. 
@ = b 

34) 
The volume displacement of a complete cone is given by 

with a = 0. For the cone in Fig. 14, b = 76 in., 
00, and t = 0.008 in. This gives 
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= 190 cu in./psi 

The base 3 of the outer shell is a spherical segment concentric 
with section 9 of the inner shell. (Although it is shielded 
from exterior pressures by the Command Service Module (CSM) 
fairing, it will be subject to low-frequency sound pressures 
that are transmitted through the fairing.) We assume that the 
compliance of section 3 is membrane-controlled. 
is given by Eq. (26), 

Its compliance 

nR3H 
'3 = *Et0 t1 - ") (61) 

with Ho = 24 in., R = 180 in., t = 61 mils. For steel the 
Young's modulus is E = 3 x 107 psi and Poisson's ratio is 
v = 0.3. The result is 

c3 = ~(180)~=24(0.7) 
2 x 2 x 10~ x 61 x IO-~ 

= 1.44 x IO* cu in./psi (62) 

Since this part of the structure is shielded by the CSM fairing, 
it probably has no significant effect on the NR. We include it 
in our NR calculation, however, since it will contribute to 
transmission under test conditions, where the CSM fairing is 
not present. 
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Calculation of Noise Reduction 

The noise reduction for a shell enclosing a volume is derived 
earlier in this chapter, and the result is given in Eq. (10). The 
governing equations were represented by the equivalent acoustical 
circuit shown in Fig. 5. An equivalent circuit for a double-shell 
enclosure like the CM is shown in Fig. 16. 

FIG.16 EQUIVALENT ACOUSTICAL CIRCUIT FOR 
DOUBLE SHELL-ENCLOSED VOLUME 

The relation between pll (the pressure in the interspace 
volume 11) and p12 (the pressure in the interior volume 12), 
as obtained from Fig. 16, is 

ljC12 
p12 = pll l/C4 g + l/Cl2 = Pll Cl2 

c4. .9 
+ c4..9 

(63) 
. . 

By definition, the noise reduction NRi of the inner shell is 

NR = 20 log PIJP1* = 20 log c 
cl2 

l+cq 1 (64) 
. . 



The compliance C4..g is the sum of the compliances 
sections of the inner shell, 

c4. .9 = c4+ c5+ . . . + cg 

of the 

(65) 

The previous calculations show that this sum is dominated by 
the compliance of the ledge-hatch cover combination C4 6. If 
we assume that this combination is a simply supported blate, 
we obtain 

c4..9 = 4 x 103 cu &./psi (66) 

from Ecgs. (9), (12), (13) and (15). If we take a value of 
3 x 10 cu in. for the free volume 12, as suggested earlier, 
then we find the noise reduction of the inner shell to be 

mI = 20 log C 
1 + 1.5 x lo4 

4 x 103 1 = 11.7 dB (67) 

From the symmetry of the circuit shown in Fig. 16, it is clear 
that the relation between p, and pll is similar to that between 
pll and p12. Thus, the overall pressure ratio 

20 1% Po/P1* = 20 1% PO/P11 + 20 log Pll/P12 

may be evaluated with the aid of 

(68) 
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. 

20 log Po/Pll = 20 log r l+L 
c1,3 1 

where 

C c4..9 cl2 
eq = cl1 + c4 g + Cl2 . . 

= 51 + cl*(l + cl*/C4a.g)-1 

and 

Clr3 
= Cl + C2 + C3 = 3.34 x lo* cu in./psi (70) 

If the interspace volume 11 is sufficiently filled with 
porous material so that its pressure fluctuations are isothermal, 
then its compliance is given by Eq. (47), and 

C eq = (2 x 10~) + (1.5 x 10~)(38.5)-~ 

ZTz 2 x 104 cu in./psi 

The noise reduction NR, of the outer shell therefore is 

NR, = 20 log PO/P11 = 20 1% (1 I- cll/cl,3~ 

= 20 log [l + (2 x 104)/(3.34 x lo*)] (72) 

= 40 dB 
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Adding the NR provided by the inner and outer shells gives 

%ot 
= 11.7 + 40 = 51.7 dB 

Discussion and Conclusions 

In the preceding sections, we have developed an estimate of 
the NR provided by the Apollo Command Module at low frequencies, 
in the absence of any structural or acoustical resonances. We 
conclude that the inner shell is relatively compliant, due to the 
flat ledge and flat hatch cover sections. It provides only about 
10 dB of NR. The outer shell, however, is fairly effective, 
since its uniform conical construction is relatively non-compliant. 
It provides approximately 40 dB of NR. If the inner shell were 
of a similar shape, we might expect the CM to supply NR of the 
order of 80 dB at low frequencies instead of the 50 dB estimated 
for the present design. 

The foregoing conclusions would not hold if acoustical and 
structural resonances should occur. Chapter VI will describe some 
experiments on a model of the upper portion of the inner shell 
hatch structure, which indicate that the forced "quasi-static" 
compliance model is appropriate to portions of the structure. 
Nevertheless, calculations of the effect of structural stiffeners 
on low-frequency NR indicate that volume-pumping modes of the 
shells.may be a problem. 
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CHAPTER IV 

EFFECT OF STRUCTURAL RESONANCE 
ON !l'HE NOISE REIG@Jmm 

INTRODUCTION 

In the previous chapter we saw that It Is possible to 
achieve relatively large values of low-frequency NR with 
axlsymmetrlc structural shells. This occurs particularly 
when the shell responses are quasi-static, and when the 
corresponding acoustic compliances are membrane-controlled. 

Uninterrupted, axisymmetric shells may have low-frequency 
resonances that are non-volume-displacing. Such resonances 
do not affect NR. However, If there is a structural discon- 
tinuity, such as a reinforcing longeron or a cutout for a 
hatch, then the low-frequency resonating modes may become 
volume-displacing and reduce NR. In this chapter we develop 
estimates of the sound transmission of the shell when such 
volume-displacing resonances exist. We shall Illustrate the 
general results by applying them to the case of a simply 
supported cylindrical shell that has a single rigid longeron. 

.GENERA.L THEORY 

We are interested in the sound transmission into the 
volume contained by a closed shell at frequencies below 
acoustic resonances of the contained volume. The situation 
is that described in earlier work for the "intermediate- 
frequency region." If the resonant structural modes are 
volume-displacing, then they will have an appreciable coupling 
to the external sound field, resulting in a structural modal 
energy (Ref. 21) 

em = M&v*> ‘R ?rad 
n, E % + %ad 

Here, <v5 is the square of the "kinetic velocity" of the 
resonator, n, is the shell modal density, and 8R is the modal 
energy of the sound field, given by 
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<PE> v 

pc2nR&o 

Also, <p*> is the mean-square pressure of the external sound 
field in's frequency band Cxo which includes the resonance 
frequency of the structural modes, p and c are the density 
and sound speed of the acoustic medium, and 

(75) 

is the modal density of the exterior acoustic space, whose 
volume is V,. 

The radiation loss factor t) will depend on the volume 
velocity U,of the shell mode. TBdstructural loss factor 7js 
is usually assumed large compared with '1 
prediction methods exist for this parame@g: 

No reliable 

The radiated power from a sim 
P 

le 
U can be readily computed (Ref. 

source of volume velocity 
22 . It is given by 

II +- 
k* c u2 

rad= R = <v2> 01) MS qrad (76) 

where k denotes the acoustic wavenumber at frequency a, and 
M represents the structural mass. The pressure fluctuation 
ifi the air volume within the shell is also related to U,as 

<Pf> = u*/cll*c* 
S (77) 

where C, s Vs/pc 2 is the acoustic compliance of the contained 
volume V, within the shell. Combining Eqs. (73) through (771, 
we get 

i3r2 c5 A 
- = m5 v2 K 

p C 9Ead 
<P$ 5 qs + qrad 

v 
' 

S 

(78) 
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where v is the ratio of the modal density of the vibrating 
shell s%gment to that of a flat plate of the same area, and 
where we have Introduced the expression for flat plate modal 
density given in Ref. 23. The radius of gyration of the shell 
cross section Is K and the longitudinal wave speed In Its 
material is cd. 

If the shell Is divided into N sections, then 

<Pf> = <pf>j (incoherent sections) 
j=l 

(79) 

where the structural parameters in (78) must be evaluated for 
each section, and we have assumed that the volume-pumping from 
each section is incoherent with that of others. At low fre- 
quencies, however, it is likely that the shell segments will be 
excited in phase. If this is the case, the total volume velocity 
will be 

U = r 3 (80) 

j=l 

and the mean-square internal pressure will be 

(81) 

where pij) = Uj/~ C 
s l 

APPLICATION TO A CYLINDRICAL SHELL 

Let us imagine that the shell In question is the right 
circular cylinder with rigid end caps shown in Fig. 17. It has 
a single longeron, which we model as a simply supported line. 
The flexural mode shapes for such a shell are of the form 

nx1 m7rx 
3 = sin 2a sin,-@; n,m Integers (82) 
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The ratio of the modal density of' this shell to that of a 
flat plate of the same area has been derived by Manning 
(Ref. 24), and Is given In Fig. 1.8 (for groups of modes 
averaged over l&octave bands). 

The modes for which n and m are odd will cause volume- 
PumNw l They make up one-fourth of all the modes of the 
cylinder. The average radiation loss factor for this set of 
modes for a panel has been found by Maldanlk to be (Ref. 25): 

2 
%ad = -4 

PC p A, 
B M,(u, u#'* 

(83) 

where MS is the panel mass, P Is Its perimeter, ac = c2/KcL is 
the acoustic critical frequency of the panel, and A, = 2m/coc 
is the acoustic wavelength at the critical frequency. From 
(83) then, 

where pp Is the density of the panel material and H is defined 
so that ppH is the surface density of the panel. 

Our cylindrical shell is divided into a single section, with 

b (85) 

Placing (83) through (85) in (78), we get 
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NR = -10 log <P;>/<P*> 

= 10 log[37r11(f6a3.43/c6) (P,/~)*(c/c~)* (l+Uaa)'* 1 

(86) 
+ 10 log '1, -10 log vs 

where we have assumed rj, >> ?jrad. If we also assume that qs 
Is frequency-independent, then, referring to Fig. 18 for the 
frequency-dependence of vs, we see that the NR will rise at a 
rate of 65 dR/decade as the frequency Is Increased in the 
frequency range for which resonant volume-pumping modes occur. 

For a particular model, an experimental st 
will be described in Chapter VI, p Y 

dy of which 

1.25 x lo-2 cm. 
= 2.7 gm/cm , *a = a = 18 cm, 

andH = For thesePvalues, 

NR = 60 log lo-*f + 10 log q, - lo log vs + 31 (87) 

A curve showing the NR of this model cylinder 3 s shown in 
Fig. 19, based on an assumed value of q = 10' Also 
indicated on the same graph are the predicted &d measured 
membrane NR's for this cylinder. 

The result of Eq. (86) is valid for the frequency range 
where structural resonances occur, i.e., above the fundamental 
structural resonance frequency. For a flat plate, the funda- 
mental resonance Is relatively simple to estimate for a wide 
variety of boundary conditions (Ref. 26). For a cylinder, 
however, the calculation is somewhat more involved. We can 
use formulas developed by Heck1 (Ref. 27) to derive an 
estimate of this frequency for supported cylinders. 

Heckl's formula for the ratio of modal resonance frequency fm 
to ring frequency f (at which the fundamental "breathing 
mode" occurs) for s &% cylinders is (Ref. 28) 

(fm/fring12 = (l-v*) so; ,s + P*((r+m*)* 

where v Is Poisson's ratio, m is the circumferential mode number, 
(T is the axial wave number nva/J, and B sdq. If we minimize 
(88) by differentiating with respect to m, the result is 
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( 89) 

where the smallest value of c has been taken, corresponding to 
n=l. 

It is interesting to compare the lowest structural resonance 
frequency with the lowest acoustical resonance frequency fa: 

For the cylinder in our example, 

fmin/fa = 0.47 

Since the lowest acoustic resonance frequency is 

g6o Hz 

( 90) 

(91). 

(92) 

the lowest structural resonance is 450 Hz. 

We note, from Fig. 19, that the resonant contribution to 
sound transmission is exceeded by the compliant (nonresonant) 
contribution at frequencies above 300 Hz. We would not expect, 
therefore, to see the effect of structural resonance on the NR 
of this cylinder. The data presented in Chapter VI indicates 
that this is the case. 

DISCUSSION AND CONCLUSIONS 

In the frequency region below the first acoustic resonance, 
the upper bound on the NR is the quasistatic membrane compliance 
prediction. For frequencies within an octave above the funda- 
mental resonance frequency of the cylinder, however, structural 
discontlnuities may cause large reductions in NR relative to this 
upper bound, if their compliance is very large. 
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A good design rule of thumb for reinforced shell structures 
tight be to avoid panel resonances that occur less than an octave 
below the resonances of the contained air space. Use of this 
rule should result in the probable retention of the quasi-static 
NR at least up to the first acoustic resonance. 

Exper%mental data on the effects of structural resonance 
on the vibration and NR of cylindrical and conical shells are 

.presented In Chapter VI. 
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CHAPTER V 

EFFECTS OF ACOUSTIC RESONANCE ON LOW-FREQUENCY.NOISE REDUCTION 

INTRODUCTION 

We have defined "low frequencies" in the context of this 
report as frequencies below the first acoustic resonance of the 
receiving space. For the Apollo CM, this resonance occurs at 
approximately 50 Hz. Even in this low-frequency range, however, 
there may occur acoustic resonances which are associated with 
the interspace volume. 

Such low-frequency resonances may occur as the result of an 
interaction between the interspace volume and an air vent 
connecting this volume to the CM exterior'. A resonance may be 
associated with the acoustic mass of the vent acting in con- 
junction with the compliance of the interspace. The effect on 
the system NR of such resonances and of related resonances are 
studied in the present chapter. 

Since the entire CM is axlsymmetric, aside from perturbing 
effects of equipments, the interspace between the shells shares 
this symmetry. The shortest distance measured within the inter- 
space between the two poles of symmetry of this space is long 
enough to permit an acoustic resonance to occur at a relatively 
low frequency. The acoustics of the interspace resonances and 
the potential effects of such resonances on the low-frequency 
NR are also treated explicitly in this chapter. Experimental 
studies of these resonances are described in Chapter VI. 

EFFECTS OF AN AIR VENT ON CM MODEL NOISE REDUCTION 

Air Vent Resonance 

The interspace between the inner and ._. ._ outer shells of the 
Apollo command module is vented to the exterior via a tube which 
connects the interspace with the service module Interior. At very 
low frequencies such venting will allow the pressure fluctuations 
on the exterior of the vehicle to be directly applied to the 
internal shell (neglecting any NR of the service module). This 
venting reduces the NR markedly, since it is the outer conical 
shell. of the CM that supplies most of the noise reduction at these 
low frequencies. It Is therefore of considerable interest to 
discover the range of frequencies over which the exterior shell 
will be effectively acoustically "short-circuited" by the vent. 
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If the dissipation in the tube is small enough, then there 
also exists the possibility of a Helmholtz resonance involving 
the acoustic mass of the air vent and the acoustic compliance of 
the interspace volume. Such a resonance will lead to pressure 
amplification within the interspace and an increase in the noise 
in the CM. 

One may also expect to find an antiresonance at a higher 
frequency, involving the air vent acoustic mass and the acoustic 
compliance of the outer shell. Near the antiresonance frequency 
the noise reduction will be increased, since volume-pumping by 
the outer shell will be almost exactly balanced by the reversed- 
phase volume-pumping in the air vent. 

In this section we shall examine the effect of the air 
vent on the low-frequency noise reduction. We shall here limit 
our discussion to a study of the probable range of resonant 
frequencies for such effects on Apollo-like structures. Calcu- 
lations for other structures may be carried out on the basis of 
the methods given here. 

Estimate of Resonance Frequencies for CM Model 

The frequency of the resonance between an acoustic mass 
M and a compliance C is given by 

fr - & (MC)-l12 (93) 

In terms of the volume of the air space V, the ambient density 
p, and the sound speed, the compliance of the air space is given 
by 

C = v/p c2 (94) 

or by eq. (7),which is equivalent. 
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The acoustic mass of air contained In a tube of cross- 
sectional area A and length 1 is (Ref. 29) 

Placing 

M= p J/A 

(94) and (95) into (93) results in 

f, = 

(95) 

(96) 

In Chapter III we noted that a reasonable value for the 
interspace volume is 3 x lo5 cu in, Let us assume that the 
vent has a cross-sectional area of 1 sq in. and a length of 
20 In. Then the resonance frequency is approximately 

fr s 0.9 Hz (97) 

The compliance of the interspace volume, assuming 
adiabatic fluctuations, is approximately 1.5 x lo4 cu ln./psi. 
The compliance of the outer shell,which was given in Eq. (6O), 
is approximately 1.5 x lo2 cu in./psi. According to Eq. (93), 
the ratio of resonance frequencies is inversely proportional 
to the square root of the compliance ratio. This means that 
the antiresonance between the air vent and the shell is 
approximately ten times higher in frequency than the resonance: 

'a = 9 Hz 
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Effect of Resonances on Structural NR 

A schematic diagram of the system discussed here is 
shown In Fig. 20. The air vent is shown as a small tube, 
the Interspace volume is Vl, and the volume contained within 
the Inner shell Is V2. The inner and outer shells are 
designated as Sl and S2, respectively. 

FIG. 20 “DOUBLE WALL” HELMHOLTZ RESONATOR 

The electrical equivalent circuit by means of which one 
may study the pressure transmission of this system is shown 
in Fig. 21. This circuit is a modification of Fig. 16. If 
M, Is Infinite (obtained by A+O), the system is reduced to 
one with no vent. The presence of the acoustic mass of the 
vent is found to give rise to resonances and antiresonances, 
and to result in a noise reduction curve like that shown in 
Fig. 22. The noise reduction for f > fa approaches the value 
computed for a system with no vent. The noise reduction in the 
decade between f, and f, changes rapidly from a very low to a 
very high value, and very little noise reduction is obtained for 
frequencies below fr. 
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Clearly, It Is desirable to keep fr &nd fa as low as 
possible so that the noise-reducing qualities of the outer 
shell frequencies at which appreciable acoustic excitation 
is present, It Is not practical to reduce these frequencies 
by increasing the compliance of the outer shell, since such 
an increase reduces the asymptotic (higher frequency) noise 
reduction. Therefore the acoustic mass of the air vent should 
be kept as high as possible; that Is, the opening should be 
kept as constricted as possible. 

ACOUSTICS OF SFACES BETWEEN AXISYMMETRIC SHELLS 

The acoustic resonances of a fluid contained between two 
axisymmetric rigid shells can be derived exactly for a few 
simple shapes. Generally, however, the shapes will be so 
complicated that an exact treatment of the basic differential 
equations and their solutions will not be possible. In this 
section we describe how an acoustic equation for the space can 
be derived and solved by some approximate methods. 

Derivation of the Wave Equation 

Let us consider the fluid contained between two axl- 
symmetric shells A and B, as shown in Fig. 23. The shape of 
this. Interspace or coupling volume is defined by the shape of 
the median surface r that Is equidistant from A and B, and by 
the distance between A and B at any osltion on this surface. 
Positions on r have coordinates (#,s P where @ Is the azimuthal 
angle and s is a lineal dimension along a line of constant $. 
We take s = 0 on the lower "pole" of r and s = S at the upper 
pole. The distance from any position on I' to the polar axis 
is r(s) and the distance between A and B along a line perpen- 
dicular to r is w(s). 

The major simplifying assumption made, aside from 
linearity, Is that the acoustic field variables are constant 
along lines perpendicular to I'. This restricts us to that 
frequency range where the acoustic wavelength Is long compared 
with the greatest value of W(S). 

To construct an equation of motion, we consider a.sectlon 
of the volume bounded by A and B and by the surfaces s = const, 
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s + As = const, @ = const, and @ + A$ = const. This volume 
element Is sketched In Fig. 24. We next write down the mass 
conservation equation, the force equation, and the state-energy 
relation. Effects of viscosity and thermal conduction in the 
gas and at the boundaries will be ignored. 

Continuity Equation (Conservation of Mass). - If the flow 
velocity Is resolved Into components us and u@ parallel to the 
unit vectors gs and & 8' and the fluid density'is p, then the 
rate of mass addition to V Is 

p “eA# $ + pusAs I I s 
and the rate of mass loss 1s 

p %JAd q) + A@+ pusA, I S + As 

The difference between rates of mass addition and loss 
results In a rate of change of mass contained In AT: 

I #+A 
+ pusA, 

I S 
- pusAs I s + As 

Approximating the differences by partial derivatives gives 

As A$ rw a 
& = - As A# $+u,w) - As Ap &usrw) 
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which can be rewritten 

a 
& + P,Pei?+ P,us & an rw = 0 (99) 

In deriving (99) we have taken P = PO, the ambient density, when 
It multiplies a fluctuating variable, since we consider linear 
terms only. 

Force Equation (Conservation of Momentum).- The fluid element 
contained in AT is accelerated by a net force actin on it. A 
change in pressure along s results in a force p(s)As P) in the +s 

(P) direction where p(s) is the pressure at s and As is the projected 
area of the volume element in a plane perpendicular to es. 

Similarly, the force in the (P) -s direction is p(s + hs) As . The 
net force in the s direction and the resulting acceleration of 
the volume element obey. 

The corresponding equation for the $ component of acceleration Is 

-,(p) $f A@ = & 
9 (PU AT> @ 

(P) Combining these,and linearizing (using As = As and Ai') = A$), 
gives 

ait PO x+ VP = 0 000) 

Energy-State Equation. - When viscosity and thermal conduction 
effects,can be ignored, then relations for the equation of state of 
a gas and conservation of energy result in 
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d 
# 

YFO 

p=P, = 
C2 (101) 

where y denotes the ratio of specific heats and c the velocity 
of sound. 

We combine (qg), (100) and (101) to obtain the desired 
equation. 

Wave Equation.- The wave equation Is found by eliminating 
9 and u. We do this by operating on (9 
with V, then subtracting (100) from (99 

) with a/at and on (100) 
to obtain 

a2 au sa 2 ----$+Po~~~“m’vp’o 

We then use (101) and the s-component of (100) to get 

1 a2 7 +J - g k (an rw) - V2p - 0 (102) 

This Is the desired equation. It Is very similar In form to the 
traditional "Webster horn,equation," as we shall see. 

Comparison with Horn Equation 

Consider a slender horn of circular cross section specified 
by r(x) (see Fig. 25). With the assumption that the maximum 
value of r(x) Is small compared with the wavelength, we can 
derive the traditional Webster's horn equation. Continuity, force 
and energy state equations are stated below. 

Continuity Equation (Conservation of Mass) 

% + PO v*G + PoUx & [ln S(x)] = 0 (103) 
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Force Equatlon (Conservation of Momentum) 

b?i 
PO x + VP = 0 

Energy-State Equation 

d 
8 

YFo 2 
p=po= c 

004) 

(105) 

AXIS OF -h-x 
SYMMETRY 

FIG.25 SLENDER HORN OF CIRCULAR CROSS SECTION 
SPECIFIED BY r(x) 

These results are based on the same premises as in the derivation 
of the generalized differential equation governing the pressure 
within the Interspace between axlsymmetrlc shells. usm3 (103) # 
(104),and (105), we get Webster's horn equation: 

~~-%% jn S(x) - v2p = 0 (106) 
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Assuming ew and eoicut dependence, this equation becomes: 

& an S(x) + c k2 - m2 
si- 1 P=O (107) 

The interspace counterpart Is: 

g anEw r(s)] + k2 - -$- 
r (4 >3 p = o (108) 

Even though these equations are identical in form, with S(x) 
corresponding to w(s)r(s), there is an essential difference 
which should be noticed. Whereas the assumption 
Webster equation is that the maximum value of r(x ~"~y@Jjt~ IS 
small compared with the wavelength, the interspace equation is only 
restricted in that w(s) is small compared with the wavelength. 
The product w(s)r(s) may be large. Thus, it appears that the 
range of validity of the interspace equation is greater than that 
of the Webster equation. 

Extensive work on the Webster horn equation has been done 
by Salmon (Ref. 30). For the m = 0 case, Salmon found a solution 
for horns characterized by: 

r(x) = r. [ cash (X) + T s~nh ($) ] (109) 

where r. is the initial radius, H is a "flare" factor, and 
T is the shape factor which varies from zero to infinity. 
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T = 00: Conical Horn 

T 1: = Exponential Horn 

T G: = Catenoidal Horn 

Salmon's solution to the Webster equation is: 

where 

For 
can 

the 

P = 'j& Poe c ?(Px - ct) - $qBx - ct) 
+ PRe 1 (110) 

eq/m 011) 
particular shape factors and for m # 0, Webster's horn equation 
be solved. These will not be enumerated here. 

A difficulty in the analysis of interspace acoustics lies in 
fact that most problems considered are not analytically solvabl: 

It is useful, therefore, to establish an approximate method for 
analyzing the acoustic properties, and the acoustic resonant 
frequencies in particular, of axisymmetric enclosures. The validit: 
of the approximation method can be verified, in part, by comparison 
with results obtained from an analytical study of simple horn 
shapes. 

The Rayleigh-Ritz Method 

An approximation technique useful for finding resonant 
frequencies is the Rayleigh-Ritz method. This method is based on 
Rayleigh's principle, which states that "in the fundamental mode 
of vibration of an elastic system, the distribution of kinetic 
and potential energies is such as to make the frequency a minimum 
(Ref. 31). Since the frequency of vibration varies as the square 
root of the ratio of stiffness to inertia, any constraint applied 
to a system will increase the frequency" (Ref. 30). Thus, "if 
we consider any constrained mode of vibration and calculate its 
mean potential and kinetic energies, the result of equating them 
will yield the frequency of this constrained mode, which is 
necessarily not less than the frequency of free vibrations" (Ref. 
30). This energy method, therefore, yields an upper limit to the 
natural frequency of vibration. The accuracy of the method is 
based on the fact that first-order changes in energy produce only 
second-order changes in frequency. In the language of the calculus 
of variations, the first-order variation of energy with respect to 
frequency is zero. 
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Illustration of Rayleigh-Ritz Approximation Method 

A simple example will prove to be both an illustration and 
gerificatlon of the Payleigh principle. Consider an exponential 
iorn for m = 0, specified as in Fig. 26. We shall first solve for 
Ghe resonances analytically. 

Analytical Ereatment.--The solution of the Webster's differential 
equation can be written 

p(x) = eoxfi c PO eoiskx + PR e+iskx 1 
where 

B 1-l ( 1 l/2 
E 

ii?-7 

Applyingthe two boundary conditions: 

=g 
I 

= 0 
x=0 x=a 

we get: 

Solving for k:: 

k2 = n 

which specifies the resonances. 

(112) 

(113) 

(114) 

Rayleigh Approximation.- We must first pick a shape func- 
tion representing a constrained mode of vibration. Our first 
attempt at finding this shape function might be a third-order 
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polynomial weighted by e -x/H, I e . . 

3 =e -x/H (ax3 + bx2 + cx -I- d) (115) 

where the pressure Is given by p = AJI. With the boundary conditions: 

= 0, and p(x) 
I 

= 1, P(X) 
I 

= (-1) e'jiH 

the shape function becomes 

We must now find the mean kinetic and 
incremental energies can be written: 

$f = e’X/H (h 
‘a 

x2 + 1 
> 

potential energies. 

2 
AT = incremental kinetic energy = AT 

2 
A'J = incremental potential energy = 

+ AT 
2PC 

(116) 

The 

017) 

where 

AT (incremental volume) = S(x) Ax = nr2(x) Ax = ve 2xp Ax 
(118) 

From the force equation: 

au a 
post=- x 3 

89 



Assuming eoiwt harmonic dependence, we have: 

I a uu-- 
$ WPo x 

or 

Therefore, the mean energies can be written: 

'f dV = $/$ '5 s(X)dX = ,--& IP2 e2X/Hax (121) 
0 0 0 0 0 

We must now find ($$J2 and P 2 . After some simple steps we have: 

and 

+ g2]x4+[+ -9(l+$)]x3 

++ 1 -2x/H (122) 
H 

$ x4 u ,3 - 3x2 + 1 
) 

e-2x/H 023) 

According to Rayleigh's principle, we can equate the average 
potential and kinetic energies and solve for the frequency. This 
yields: 

k2 
,2 JJ (z)' e2x/H dx 

=3- a (124) 

$ p2e2@ dx 
0 



If we take ,# = 2, as an example, then 

+8 +12+2 
=z 1 

We can now compare both methods: 

Approx. Rayleigh Exact Analytical 

k2= u, 2 /c 2 k2 uu2 /c 2 

H-m 2.474 2.467 

He10 2.484 2.477 

(125) 

Note that, if we had guessed a shape function, 3 = co8 
we would have obtained the exact analytic results, as expected, 
since we would have picked the exact mode shape of free vlbra- 
tions. Note also that the exact results are lower than the 
approximate results. Theory suggests that this is a general 
result. 

We are led to believe, therefore, that the Rayleigh 
approximation method applies with sufficient accuracy to horns 
as well as spaces between two axlsymmetric shells, if mode shape 
functions are carefully chosen. 

Ritz's Contribution 

Now let us Indicate Ritz's contribution to the Rayleigh- 
Ritz'method. To improve the accuracy of the estimation, a 
second term Is often added to the shape function as a way of. 
better approximating the mode shape of free vibrations. ?hat 
is, we use 
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11 = *, + aJIl (126) 

where 3, also satisfies the boundary conditions. We then proceed 
as before, now solving for k = F = 00 . We desire that value of 
the parameter a for which the variation of w with respect to a is 
a minlmum, that is, the value ao, that satisfies 

gg=o (127) 

Having optimized our solution, we then obtain (u = ~(a~). With 
this method, the exact solution is presumed to be approximated 
more exactly. 

Application to Apollo CM Acoustic Model 

The acoustic model of the Apollo CM is shown again In Fig. 27 
The first task in analyzing the natural resonances of the interspac 
is to establish the boundary conditions on the pressure. The 
boundary conditions are applied at the poles of symmetry: s = 0 
and s = S. At these positions the geometry is similar to that of 
a disc or pill box, Fig. 28. The pressure field for a space 
having this shape is proportional to J,(kr) cos m@. 

The functional behavior of the field will be: 

m= 
I 

= 0; J(0) = 1; behaves as a (cosine) for long 
r=C wavelength. (i28a) 

m = 1; g$-=) # 0; J(O) = 0; behaves as a (sin) for long 
wavelength. (128b) 

m> 1; g(kr) 
I 

= 0; J(0) = 0; behaves as (1-cos) for long 
r4 wavelength. (128~) 
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FIG. 27 ACOUSTIC MODEL OF APOLLO COMMAND MODULE 
SHELL. MEDIAN COORDINATE s. w( s) EVERYWHERE 
PERPENDICULAR TO s. r( s) , POLAR COORDINATE, 
DRAWN TO CENTER OF‘w(s) 
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FIG.28 DISC OR I' PILL BOX II. a<d. THE PRESSURE 
DISTRIBUTION IS PROPORTIONAL TO 
Jmfkr) COS m@ 
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these conditions are to be met both at s = 0 and at s = S. 
suggests the following shape functions: 

m =5 0; 7) = COS y 

m = 1; Jc = sin n7rs 
( > s cos In@ 

m>l;Jc= c 
l-cos 2p CO8 I@ 1 

This 

(1294 

(129b) 

(1294 

Xonsidering 9 dependence also, we have for the particle velocity: 

I I U S 

I I % 

The incremental kinetic energy can now be written: 

(130) 

(131) 

AT = $1~1~ AT = ~(~~~1~ + 1~~12) AT = I. 
3X 

[("'>' + \& (g)]' AT 

(132) 

where (see Fig. 24) 

AT = w(s) r(s) As A@ 

= A(s) As A$ 
033) 

and (see Fig. 29) 

A(s) f w(s) r(s) 
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AT is the same as in previous discussion. Therefore, equating 
mean potential and kinetic energies, we get: 

ff [@)2]A(s)dsW +s’“J” ,+-- (&)’ A(s)d=W k2= ;2=o ’ 0 0 0 r (4 
2n s 

ss p2 A(s)dsd@ 
-0 -0 

034) 

Let us now investigate the product w(s) r(s) = A(s). In 
Fig. 29 we have plotted A(s) vs 8. We can see that, to a very 
good approximation, A(s) can be represented as seven linear 
segments, c 3 s+d J8 (The values of the variables s, r(s), 
w(s), A(& cj' and dJ are tabulated in Table II.) This linear 
property suggests that integrals that we encounter such as 

A(s) ds 035) 

be written as: 
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TABLE II 

VALUES OF VARIABLES USED IN CALCULATIONS 

I A(s) = I 1 r7 11/2 I 

I- inches Inches I - I ~~ inches I sq.inches I slope intercept sq.inches I I I 

0 0 1 0 
1.46 0 not used 

60.0 58.2 1.5 w.3 
112.e 

65.9 
-66B.3 62.1 

, 71.2 20.5 1350.95 _- 
64 

94.8 61.6 1.5 92.40 
-53.3 5147 

-. 8 141.6 36.8 168.5 1.5 55.20 - 49 

~57.6 22.0 22.5 495.00 -27.5 -3839 29.4 

183.2 16.4 1.0 16.40 
-18.7 3440.8 19.2 

-.80 164.7 9 
203.6 0 24.5 0 

-I 
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(136) 

~ where w can be 1, 2, 3, 4, ---. Such integrals may be 
I handled analytically and summed as indicated. 

m-0. - For the m = 0 case 

This yields: 

tc/ 
n7rs = co9 -iJ- 

P = A$ = A cos y 

a 3 A E sin nss = - S S s 

78 a 0 = 

(y; Isin (7) A(s)ds 

j+cos2 (> A(s)ds 
0 

037) 

(1384 

(138b) 

(138~) 

= 
($!$)2 ~~'+'sin2(-)(cjs+dj)ds 

(c s+d )ds il 3 

(139) 
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The value& of c J and d 3 are taken from Table II. 

m Z: 1. - For the m = 1 case 

T) = sin y cos m@ 

P = A3/ = A sin 

a 
3 S =A SF co9 y cos m@ 

a 
a$ =- IRA sin y sin m8 

c ) 

This yields: 

tyf Jafcos2 cy) cos' m9 A(s)dsdG k2 
0 0 = 

Jar sin2 @?$) sin2 m@ A(s)dsd@ 
0 0 

XII2 
2= s 

ss 
sin2 (F) sin2 ma A(s) dsd$ 

+ 0 0 r2( s) 

(140a) 

(140b) 

(14oc) 

(140d) 

041) 

sin' (F) sin2 m$ A(s) dsd@ 
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These integrals 5 an be handled as before except for the one 
containing the r in the denominator. 
and r(s) 

(s) Since A(s)= r(s)w(s) 
= s for s = 0+60 in. and w(s) fi: 1 in. for 

S = O+ 60 in., we can write this integral as: 

2P 
m2 $ sin2 m9 d@ 

0 
'[ 1' sin2,(?) ds 

S 

(142) 

We replace r(s) in Eq. (141) by its rms value [p(s,)l 
l/2 

It is then removed from the second integral since 
its variation is relatively slow. This rms radius is also 
tabulated in Table II. The solution of the first integral 
is an infinite sum, the first several terms of which yield 
the required accuracy. 

m > l.- For the m > 1 case 

9 = (1 _ cos Z?$S) ~0s m@ = 2 sin2 (7) cos m@ 

(1434 

P = A?+? = 2A sin 2 (F) cos m@ (143b) 

= y A sin F cos m@ (143c) * 

a 
758 = - mA 

[ 
2n7rs 1 - cos (- )I sin ma (143d) 
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This yields: 

28 s 
(y; $$sin' (F) cos' m$ A(s\dsd@ 

k2 = 2; OS 

4 s Jsin4 (y) cos2 m# A(s)dsd# 
0 0 

2n s 
4m2 s $ sin4 (y) cos2 m@ A(s) dsd~ 

+ 0 0 r2(s) 
27r s (144) 

4 $ Jsin4 (y) cos' m@ A(s)dsd@ 
0 0 

These integrals are handled in a similar manner to those 
previously discussed. 

Ritz Modification 

The Ritz modification, as discussed above, is straight- 
forward. Reviewing, the mode-shape function is represented 
by a linear sum: 

?eA = [ ?I/ob) + a 1c/+) cos m@ 1 045) 

where a is a parameter to be optimized. A procedure for 
picking gl(s) that satisfies the boundary conditions is to write 
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This constitutes, in effect, the addition of a second spatial 
harmonic term. The shape functions become: 

m=O @= 
[ 
cos (T) + a cos (,T )I 

m=l 7c/= 
[ 
sin(y)+asin(F )I cos @ 

(1474 

( 147b ) 

m>l *= 
[ 

2n7rs (~-COST ) 4nns + u (1 - cos - ,3 cos m9 
047c) 

After integration, the result is in the form 

k2 = A + Ba + Co2 
D + Ea + Fc? 0-48) 

We take the derivative, d(k2)/da, and set it equal to zero. This 
allows us to solve fop two values of cx. The value of a that 
reduces the frequency from the c1 = 0 case is chosen as the 
proper coefficient of the second harmonic term. Preliminary 
results for a = 0 (Rayleigh) and a # 0 (Rayleigh-Ritz) are 
recorded in Tables III, IV, and V. 

Conclusions 

According to the results in Tables III, IV, and V, it 
is evident that, for the n = 1; m = 0,l modes, the resonant 
frequencies are below 50 HZ. The possibility of sound trans- 
mission into the inner shell of the Apollo CM model is dependent 
upon whether this resonance condition is accompanied by a signi- 
ficant volume displacement. A measure of this volume displace- 
ment is obtained from mean pressure calculations which were 
carried out for m = 0; n = l,2,3. The assumed mode shape is, 
as before: 

= A* = A (cos F 2nns P + a cos - s ) 
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TABLE III 

RESONANT FREQUENCIES FOR m=O 

ASSUMED MODE SHAPE: $ = cos y + a cos 2y 

n=l n=l n=2 n=2 n=3 n=3 

a a f Hz f Hz a a f Hz f Hz a a f Hz f Hz 

0 0 50.4 50.4 0 0 83.4 83.4 0 0 15.5 15.5 

-0.361 -0.361 40.5 40.5 0.234 0.234 75.8 75.8 -0.059 -0.059 80.9 80.9 

TABLE IV 

RESONANT FFUZQUENCIES FOR m-l 

ASSUMED MODE SHAPE: 3 = sin y-i-u sin 2*'cos m@ ) 

n=l n=l n=2 n=2 n=3 n=3 

u u f Hz f Hz a a f Hz f Hz a a f Hz f Hz 

0 0 54.8 54.8 0 0 87.6 87.6 0 0 146.1 146.1 

0.476 0.476 43.2 43.2 -0.422 -0.422 78.9 78.9 0.350 0.350 131.4 131.4 
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TABLEV 

RESONANT FREQUENCIES FOR m > 1 

ASSUMED MODE SHAPE: 

$ = 
K 

l-cos 2y 
) ( 

+ a l-cos 4y >I cos m9 

n=l n=l 

u u f Hz f Hz 

0 0 87.0 87.0 
m=2 m=2 

-0.302 -0.302 80.5 80.5 

0 0 124.3 124.3 
m=3 

-0.388 106.1 

0 162.7 
m=4 

-0.418 132.9 



Normalizing at the boundaries (setting A = 1) we get: 

(n-1) b-2) (n=3) 

PA(s)ds 
F (Mean Pressure) = r= -195 -.435 -.413 

J A(s)ds 
0 

Resonant Frequency (Hz) 40.5 75.8 80.9 

When m = 0, the pressure has a maximum value of -1.361 at 
s s. = We see,therefore, that the mean pressure is about 15s 
of the maximum pressure. For n - 2 and 3 the mean pressure is 
over 30$ of the maximum value. It should be realized that the 
mean pressure is calculated for an approximate mode shape. The 
percentage error In mean pressure calculations may be significantly 
higher than in resonant frequency calculations. Nevertheless, 
these calculations indicate the possibility of potentially undesir- 
able acoustic resonances of the interspace. 

EFFECT OF INTERSPACE RESONANCE 
ON NOISE REDUCTION OF THE COMMAND MODUDF 

In this section we shall calculate the degree to which 
the lowest axisymmetric resonant mode (m = 0, n = 1) of the 
CM interspace can be excited by a uniform acoustic pressure 
applied to the CM exterior. We shall use the principle of 
reciprocity in deriving an expression for the NR. 

General Formulation of NR 

The principle of reciprocity in acoustics states: if a 
source of volume velocity is placed at one position in a 
passive acoustical system at rest and the resulting sound 
pressure is measured by a receiver at some other position, 
then the same pressure will be measured if the positions of 
source and receiver are interchanged. Suppose we inject a 
known volume velocity at a point in the interspace of the CM, 
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at the resonance frequency of the m = 0, n = 1 mode of the 
interspace. We then calculate the amplitude to which the mode is 
excited, and from it the deflection of the outer shell it pro- 
duces, and then the pressure which results at a test point far 
from the CM. Reciprocity tells us that this same pressure will 
be produced at the original source point in the interspace if 
the volume velocity source is placed at the test point far from 
the CM. If we can then calculate the pressure produced just out- 
side the CM, we shall know the noise reduction of the system. 

At 8 - 0, we lnjec 
~~;;af;;f;~b~~sassume e-lLut ~~~~e~x%% Uoef~~ll acoustic 

The frequency w'is 
As a phase reference, we take U, to be real.) 

the resonance frequency of the lowest mode 
of the interspace. The volume velocity U, produces a pressure 
in the interspace pa@(s), where q Is the dimensionless pressure 
mode shape normalized so that q(O) = 1. The quantity p, is the 
peak pressure produced at s - 0. 

We assume that we know the loss factor of the resonant 
mode. The loss factor q is defined as 

rl” average power dissi ated 
IL) . maximum potentia * 

Since we are operating at resonance, the input impedance 
seen by U, is purely resistive, and therefore p, is real. The 
average power which is equal to the power supplied 
by U,, 

dissipated, 
is thus p,U,/2. We can now calculate the pressure 

magnitude p, in terms of q and U,. 

The time-wise maximum potential energy of the system is 

(P.E.)max = -+ 
PC 

[P~J/(s) I’ Ab)ds 

where 2~ A(s) Is the cross-sectional area of the interspace. 

We can therefore write p, as 

PC2 u 
POP s 

27rCbq s &2b)Ab)ds 
0 

051) 
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We now wish to find the volume velocity emitted by 
the CM through the outer shell due to the source Uo. Let us 
call this volume velocity Ul. We can write 

u1 = - ia p,@(dCbb (152) 
0 

where C(s) is the acoustic compliance 
P 

er unit length of the 
outer shell. The Integral in Eq. (152 is the volume displacement; 
multiplication by -iw is equivalent to. taking the time derivative 
and changes this displacement to the corresponding velocit 
quantity C(s) is to be calculated from the membrane T-E&%0? 
rotationally symmetric shells developed in Chapter III. Here it 
is assumed that the motion of the shell is stiffness-controlled; 
Le., that the resonance frequency of the interspace mode being 
studied Is well below an' resonances of the outer shell 
also assumed in Eq. (1527 that the pressure on the outside 

It is 
of 

the outer shell due to radiation loading is negligible compared 
with the modal pressure in the interspace. 

Let us now consider a test point relatively far from the 
CM, and assume that the frequency Is low enough so that the CM 
behaves like a simple source. The volume velocity U,, injected 
at s = 0 in the interspace, produces a pressure p2 at the test 
point. We can also consider p2 to be produced by the emission 
of volume velocity Ul by the CM. According to the principle of 
reciprocity, If we now inject U, at the test point, a pressure 
p2 will result at s = 0. Furthermore, the pressure just out- 
side the CM will be related to U, in the same way that p2 was 
related to Ul when the CM was radiating. Let us call this 
pressure.just external to the CM pl. We have then 

uop2 
p1 - F (153) 

But the quantity we seek Is the pressure in the CM in response 
to a uniform exbernal pressure, or 

p2 u1 -= 
p1 % 
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If we substitute in Eq. 
Eq. (151) we obtain 

(152) the value of P,~ given by 

u1 
%=-I 

PC2 J’ ds)Cb)ds 
0 p2 

s" 

=- 
Pl 

27w @2b)Ab)ds 
0 

(155) 

The pressure distribution in the interspace, in response to 
an externally applied pressure pl, is then $(s)p2. 

To achieve the best noise reduction we must minimize 
?A* From Eq. (152) it is obvious that, all other factors 
remaining constant, we must maximize q. One could increase q 
somewhat by introducing damping material into the interspace. 
(The lowest ?j is obtained if the only source of damping is 
radiation from the CM.) 

Numerical Calculation of NR at Interspace Resonance Frequency 

In the preceding section we derived Eq. (155) for the 
NR of the outer shell at the frequency of the fundamental reson- 
ance of the interspace. In this section we shall evaluate this NR 
numerically. 

In order to evaluate the integrals in (155), we must know 
three functions:,2rrA(s), the cross-sectional area of the inter- 
space; IG% the dimensionless pressure mode-shape function; 
and C.(s), the distributed compliance per unit length of the 
outer shell. The coordinate s is defined and functions A(s) 
and q(s) are given earlier in this chapter. As in the preced- 
ing section, we take q(s) to be normalized so that q(O) = 1. 



The small end and the base of the outer shell are essentially 
spherical caps and can reasonably be expected to be substantially 
stiffer than the conical section. We shall therefore assume that 
C(s) Is zero, except for the conical section. This assumption 
should not have an appreciable effect on the value of the integral 
in the denominator of (155), since by using this assumption we are 
neglecting only a small contribution to the integral. 

The distributed compliance, C(s), is just the ratio of 
the change in area of the cross section of the shell (a circle 
of radius r l see Fig. 10) to the pressure producing the change. 
To deduce I?; functional form we shall assume that the applied 
pressure varies slowly enough in space so that we may safely 
take the membrane forces at a point on the shell to be the same 
as those produced by a spatially uniform pressure equal in magni- 
tude to the pressure applied at that point. The applied pressure 
will produce a fractional change in the radius of the cross sec- 
tion, ro, equal to the circumferential strain, ee. We then have 

2 7rr - 
c(s) = O 

ho (1 + l e I2 
= - 

27rro2eS 
P P (156) 

where p is the applied pressure and we have neglected the 
quadratic term in the strain. From Eqs. (28), (29), and (30) 
of Chapter III we find e8 for a cone under a uniforn a plied 
pressure. Using these relations, the equation for C(s P becomes 

2rro2(Ne - vN$) 
c(s) = - mp (157) 

With dimensions (In Inches) taken from the Apollo CM, we have 

c(s) ==@-=JQ (110 - 0 5 s)3 . 
8 EA 

Using this expression for C(s), and the seven-segment linear 
approximation to A(s) and the Ritz-modified mode-shape function 
$(s) taken from earlier sections of this chapter, Eq. (155) is 
found to give 
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I I p2 C2 

p1 
= 1.9 x 108 x prl i; - v, 

If we take pc2 = 20 psi, v = 0.3, E = 3 x 107 psi, A = 0.016 in. 

and q = 0.02, this beomes 

p2 I I p1 = 6.8 060) 

In other words, at the frequency of the fundamental interspace 
resonance, the pressure in the interspace at s = 0 exceeds the 
external acoustic pressure field by.20 loglo 6.8 = r 

The NR of the inner shell is primarily determined by the 
compliance of the "top hat" structure at the upper end,the most 
compliant portion of the shell. Due to the form of the mode- 
shape function, 3(s), the average modal pressure in this region 
is some 3 dB higher than the pressure at s = 0. In Chapter III 
we calculated the NR of the inner shell to be about 12 dB. 
Thus, we anticipate that at the interspace resonance frequency 
the NR within the inner shell will drop to 12-17-j = -8dB. 
This result is perhaps unduly pessimistic. It should not be 
too difficult to make q greater than 0.02. Also, it is clear, 
from the cubic dependence of C(s) upon ro, that most of the 
volume-pumping excitation of the resonant mode occurs near the 
large end of the conical part of the outer shell. Since the 
most compliant part of the inner shell is near the small end, 
the belt of Q-felt which fills the interspace between the two 
ends would appear to be in a good location to help improve the 
NR at this resonance frequency, 
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CHAPTER VI 

EXPERIMENTAL ANALYSIS AND TESTING 

INTRODUCTION 

The purpose of this chapter is threefold. First, 
we discuss the uses of experiments in vibration and acoustic 
analysis. This discussion is intended as a general guide 
to the purposes and methods of experimental analysis in 
sound transmission. Second, these methods are implemented 
in a series of (incomplete) experimental studies of various 
features of sound transmission in axisymmetric shells and 
spaces. These experiments are intended to clarify certain 
features of the acoustic and vibrational behavior of segments 
of the system. Finally, experimental models are described 
that can be used by NASA for comparison with the analyses 
presented here. 

PURPOSES AND METHODS OF EXPERIMENTAL ANALYSIS 

Structural configurations, such as the Apollo CM,that 
are exposed to acoustic environments, are subjected to experi- 
ments for a wide variety of purposes. Included in the field 
of environmental testing are experiments designed to "proof 
test" a structure. In such tests, the structure is subjected 
to an anticipated environment in order to determine whether 
or not its structural integrity and/or its operational be- 
havior are affected by the environment. Tests may also be 
carried out at lower levels of excitation to determine anti- 
cipated response at locations where sensitive equipment may 
be mounted. Such tests make it possible for vibration and 
acoustic specifications to be generated for particular equip- 
ments. 

A second class of experiments is designed to gather 
data on structural and acoustic parameters. These parameters 
are usually obtained experimentally, either because they can- 
not be directly or conveniently calculated or because it is 
desirable to correlate a calculation with an experimental 
study. Some experiments are designed to gather only a few 
bits of structural information, while others are designed 
to define almost all of the major parameters on the system. 
In either case the result of the experiment is a list of 
data to be used in theoretical analyses for the prediction 
of some other more complex bit of information about structural 
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behavior or sound transmission. The experiments on cylinders 
and cones described in this chapter fall within this category. 
In fact, we propose some measurements of structural parameters 
that can be calculated from theoretical concepts, thus enabling 
predictions of sound transmission to be based upon as much ex- 
perimentally .derived information as possible. 

Finally, of course, there are experiments that could 
be called."research tests". Such experiments are used to 
test directly theoretical calculations of modal density, 
response ratios, damping, or other parameters. They may 
also be used to test theoretical assumptions about the way 
the structure is behaving in various segments, frequency 
ranges, or modes of motion. The experiments that we describe 
on interspace resonance fall in this category. 

It is this use of experiment to determine the basic 
physical processes governing system behavior that we define 

"experimental analysis" The structures or configurations 
tied in the analysis of the Apollo CM, for example, might 
involve panels having the same membrane rigidity as the CM 
but having greatly differing flexural rigidity. If the NR 
shown by the model agrees with the theoretical analysis, 
and with tests on the CM itself, then the presumption that 
membrane stiffness controls the dominant behavior is valid. 

The example above serves to exemplify the methods of 
experimental analysis. Frequently, the "model" will be quite 
different from the system being studied. The actual structure 
may consist of segmented sandwich structures with reinforcing 
frames and longerons. The model may be a homogeneous cylinder 
having one skin thickness when membrane stiffness is studied, 
a second thickness when flexural stiffness is studied, and a 
third thickness when structural resonances are studied. 

Once the dominant mechanical behavior has been analyzed, 
changes in the model can be introduced to affect the response 
(or sound transmission) in a desired manner. If, for example, 
we find that resonant effects dominate, we might want to add 
structural damping. If stiffness effects dominate, a change 
in panel thickness could be introduced. Such changes can be 
tested in the model and then, if desirable, incorporated into 
the actual system for evaluation. 
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It has not been possible, during the course of this 
study, to carry out a complete experimental analysis of the 
Apollo CM acoustic model. We have been able to test some 
particular theoretical concepts, and such testing has enabled 
us to modify and improve our analyses. Three parts of the 
CM have been studied In some detail: the Inner shell hatch 
cylinder (Item 5), the exterior cone (Items 1,2), and the shell 
Interspace volume (Item 11). These studies will now be described. 

EXPERIMENTAL, INVESTIGATIONS OF HATCH CYLINDER 

Scaling of Hatch Section of Inner Shell 

It is possible to investigate the NR of the CM in scale 
model. However, difficulties in the scaling process itself make 
this task complicated for such a complex structure. The approach 
we use is to scale the properties (membrane and/or flexural 
rigidity) of the various geometrical shapes appropriate to a 
given frequency range, and keep careful watch on the non-scaled 
properties (such as resonance frequencies and the non-scaled 
rigidity) to insure a valid experiment. 

For the present investigation, a 1:4 scale of dimension was 
selected. The first model constructed was the Inner shell hatch 
inc.luding the cylindrical section and the hatch cover, shown In 
Fig. 30. A linear dimension scale of 1:4 will give a frequency 
scale of 4:l if the stiffness ratios are preserved. The NR will 
be invariant if all significant stiffnesses are scaled the same. 

The hatch cover ano hatch require both cylindrical and flat 
plate geometry in the first model. This requirement illustrates 
the dependence on the model described above, with a different 
scaling technique used for each kind of behavior. The cylindrical 
section responds to very slow pressure changes by changing radius 
uniformly as described in Chapter III. The appropriate property 
to scale is the in-plane stress, and, since this is borne by the 
faces of the sandwich structure, the scale cylinder section, has a 
wall thickness of l/4 the total of the inner and outer ,face 
thicknesses. 

Such a scale model will be valid for static pressure changes 
and for very slowly varying pressure. It is logical to Inquire: 
"What is the highest frequency for which such a scale model can 
be considered valid?" The answer to this question lies in the 
disposition of both the original and the scale-model resonant 
modes. For the hatch, the first resonance will be higher in the 
original than in the scale model, since we have scaled stiffness 
by 1:64 and mass by 1:4, increasing the mass-to-stiffness ratio, 
Concentrating our attention on the scale model, we find the first 
dishing mode to be at 600 Hz. Interpreting this for the original 
hatch, we can say that the first dishing mode is much higher than 
150 Hz. 
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FIG. 30 OUTLINE OF APOLLO COMMAND MODULE SHELL 



One set of resonant modes of the cylindrical shell in- 
volves bending wavps in the shell along both the circumference 
and the height. Since only integral wavelengths are permitted 
along the circumference, no net volume displacement results 
from such modes. An observer located on the axis of the cylinder 
would see no pressure disturbance from such modes. The first 
radius expansion mode (ring mode, m = 0) will occur at 
4600 Hz in the 1:4 scale model, and 1150 Hz In the 

f,i g = 
origina P 

structure. In summary. we could use such a model in experiments 
up to at least 300 Hz. 

Quasi-Static Pressure Response Experiments 

The low-frequency model tests are conducted by immersing 
the model into a spatially uniform pressure field. This field 
is generated in a sealed test chamber. Figure 31 shows the test 

FIG. 31 SCALE MODEL IN TEST CHAMBER 

117 



chamber, a plywood box of inside dimensions 1.9 x 2.3 x 2.3 ft. 
An Altec-Lansing #20802 air-cooled high-intensity 15" loudspeaker 
mounted on one wall excites the air space. Quick-release catches 
allow access through the gasketed rear panel. Uniformity of 
the pressure field inside is assured by operation below the 
first acoustical-resonance of the air space; the lowest mode 
occurs at 20 Hz to 200 Hz. This range would correspond to 
5 Hz to 50 Hz in a full-scale experiment. The loudspeaker will 
produce sound pressure levels over 120 dB inside the box. 
Levels of 105 and 110 dB were used to provide adequate signal 
levels inside the scale model. 

The electrical apparatus was arranged as shown in Fig. 32. 
The reference microphone is part of a feedback loop which ampli- 
tude-modulates the oscillator output and holds the sound pres- 
sure constant inside the test chamber. The motorized drive 
linking the oscillator and the pen recorder slowly sweeps the 
frequency range, and the recorder traces the amplitude of the 
sound pressure inside the model, as measured by the receiving 
microphone. 

Vibration sensitivity of the microphones could be a 
significant source of error, since the reference microphone and 
the scale model hang from hooks in the top panel of the test 
enclosure. Panel resonances of the enclosure do occur in the 
experimental frequency range. Two approaches were combined 
to combat this problem. Stiffeners were used to increase the 
panel resonance frequencies. Applied damping to the panels 
Ps combined with spring-mass isolation for the receiving and 
reference microphones to provide considerable vibration reduc- 
tion at the higher panel resonance frequency. 

The measuring apparatus was first calibrated by selecting 
two microphones of nearly identical pressure-vs-frequency 
response, and adjusting the voltage gain of the sound level 
meters to give the same absolute response with excitation from 
a B and K pistonphone source standard. Since the experiment 
measures the difference between two levels, a final check is 
made by placing the receiver microphone in position without 
the model, and plotting the difference between it and the 
reference. With this difference set at zero, small values of 
NR can be measured quite accurately. This calibration procedure 
was repeated for each experiment. 
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FIG. 32 EXPERIMENTAL APPARATUS 



The 

1) 

cylindrical models that we shall examine are: 

Cylindrical shell, scaling membrane (extensional) 
stiffness. 

2) Cylindrical shell as above, with one end piece scaling 
the bending stiffness of the hatch cover. 

a) Set-in hatch (Fig. 33) 

b) Overlapping hatch (Fig. 34) 

A cylinder with l/2-in. thick end plates held rigidly 
l-in. diameter posts, as sketched in Fig. 35, was built 

1) 
apart by 
with an 0.005-in. aluminum wail. Care was taken to ensure,that 
the cylindrical wall was kept smooth and wrinkle-free. The 

Constructed Models and Test Results 

FIG. 33 SCALE MODEL OF SECTIONS 4 AND 5 OF 
APOLLO CM. THIS MODEL HAS A 7.0"-DIA. 
SET-IN END PLATE AND 0.005" WALL 
THICKNESS 
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FIG. 34 SCALE MODEL AS IN FIG.33 EXCEPT WITH 
7.2”-DIA. END PLATE 

- 

II 
r 

I I 
I 

-0.005” 

FIG. 35 l/4 SCALE MODEL, SECTION 5 OF APOLLO CM 
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qerformance of 'this' cylinder, which models.only the membrhe- 
stiffness-controlled wall, is shown in Fig. 36. Modifying Eq. 
(18) by a factor of 4/(5 - 4v), to correspond to the assumption 
that the end plates do not move axially, gives a calculated 
value of 50 dB NE. 
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FIG. 36 NR DATA, l/4 SCALE MODEL, 
SECTION- 5 OF APOLLO CM 

2) A second cylindrical shell made of 0.004-In. thick !I6 
tempered aluminum was rolled into a 7.0-in. diameter cylinder 
7.5 in. high with a single l/8-in. overlap seam sealed with 
epoxy. A z/8-in. thick aluminum disc was set Into one end of 
the cylinder and a bead of epoxy run around the joint. A l/2-in. 
diameter hole provides receiver microphone access. For the first 
test, a similar 3/8-in. thick disc was sealed into the opposite 
end. The entire assembly was pressure-tested in a water bath to 
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detect 'small leaks. The NR of thls'cylinder with 3/8-in. end 
plates is shown in Fig. 37(a). !Ihe calculated NFt, based on the 
membrane compliance of the shell and the flexural corn liance of 
the end plates, Is shown by the heavy dashed line at E 4 dB NFL 

tiliid 4 X'ar BIG* c pw 

I- 

FlG.37(a) NR DATA. l/4 SCALE MODEL, SECTION 5 
OF APOLLO CM 

One 3/8"-thick end disc was then replaced with a l/8"-thick 
disc Installed in the same manner as before. The NR curve for 
this arrangement is shown in Fig. 37(b). ?he calculated NR is 
40 dB, determined almost entirely by flexural compliance of the 
l/8-in. disc. A different joint was tried by using a l/8-in. 
thick disc that overlapptd the cylinder with an epoxy-filled 
seam, as shown In Fig. 
Fis. 37(c). Figs. 37(b 3 

The performance curve Is shown in 
And 37(c) show that the edge conditions 

of the hatch cover can have an effect on its compliance and, 
consequently, the NR obtained. 
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FIG. 37(b) NR DATA, l/4 SCALE MODEL, SECTIONS 5 
AND 6 OF APOLLO CM 

We conclude from the lack of frequency-dependence in the 
NR experimental data that the quasistatic analysis Is suffi- 
cient to predict the NR of the structural elements tested here. 
The disagreement between theory and experiment (3 - 6 dB in 
Fig. 37) points out the considerable influence minor wrinkles 
have on the ability of such a shell to follow membrane-stiffness 
control. This effect will be more pronounced In the next sec- 
tion, where experiments with a larger model of a conical shape 
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FIG. 37(c) NR DATA, l/4 SCALE MODEL, SECTIONS 5 
AND 6 OF APOLLO CM 

are described. The reduction in the NR obtained by changing 
from a set-in end plate to a lap joint should be attributed to 
the numerous small wrinkles seen in Fig. 34 that were permitted 
by the lack of inner support when the set-in end plate was 
removed. When the model was constructed Mith considerable care 
to avoid these wrinkles, excellent agreement was obtained 
between the theory and the experiment. 
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Vibration Tests 

We would now like to examine the vibration of the cylinder 
wall. The wall is supposedly membrane-rigidity-controlled. It 
is not clear that we can ignore the effects on the vibration 
levels caused by nonuniformities or discontinuities such as 
ribs, supports, or seams. 

E ui merit.-Vibration-measuring equipment was added to the 
press&-&%-equipment shown in Fig. 32. A small piezoelectric 
accelerometer weighing about 1 gm is attached to the wall at 
various positions, and the output is amplified and filtered in 
the same way as the receiver microphone signal for NR tests. 
The accelerometer channel is calibrated so that the absolute 
vibration level can be recorded as.a function of the frequency 
of the applied acoustic excitation. The low-pass filter between 
the receiver microphone preamplifier and the level recorder 
passes only those signals below 300 Hz. This filter eliminates 
false responses to high-frequency excitation generated by non- 
linearities in the loudspeaker or mechanical rattles in the 
test chamber or model. 

The first cylindrical model described under section 3 is 
now instrumented for acceleration at three positions as shown in 
Fig. 38. Using the same test chamber and a uniform 105 dB SPL 
acoustic excitation,. a plot of the wall vibration vs frequency 
was obtained. Such a plot is shown in Fig. 39. The corresponding 
NR measurement was shown in Fig. 37(a). 

The cylinder was then modified by adding internal axial 
stiffening ribs at different positions on the outer circumference. 
Each rib was 3/b-in.. deep and l/8-in. wide aluminum beam fastened 
to the cylinder wall by epoxy. The beam length gave a l/-in. 
overlap support from the end plates, as shown in Fig. 38. 

Adding two ribs spaced 120° apart produced no change in the 
measured NR, as illustrated in Fig. 40. The point vibration 
levels were somewhat affected, as a comparison of Figs. 38 and 
42 shows. The data in Figs. 38 and 41 were taken at the sayne 
position, away from a rib, while the data in Fig. 42 was taken 
near a rib. 
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fIG. 38 SCALE MODEL OF SECTION 5, 
APOLLO CM IN TEST CHAMBER 

‘l!l 

I I I I I I.11 I Y I I-I lllll I , 

FIG.. 39 WBRATI-6N LEVEL, l/4 SCALE MODEL; 
SECTION 5 OF APOLLO CM (NO RIBS) 
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FIG. 40 ! 
( 

R DATA, l/4 SCALE MODEL, SECTION 5 
F APOLLO CM, WITH 2 RIBS 
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FIG. 41 VIBRATION LEVEL, l/4 SCALE MODEL, 
SECTION 5 OF APOLLO CM (TWO RIBS, 
MEASURED AWAY FROM A RIB) 

I. I -l-l- l--l--I--l-l---cl4l-4 -+44-!-l+ 

FIG. 42 VIBRATION LEVEL, l/4 SCALE MODEL, 
SECTION 5 OF APOLLO CM (TWO RIBS, 
MEASURED AT A RIB) 
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EXE'ERIMEXTAL S!l'TJDIES OF CONICAL OUTER SHELL OF THE CM 

Scaling the Outer Shell 

The second portion of'the Apollo CM to be modeled is the 
entire ,outer shell. 
2 and 3 in Fig. 14. 

This consists of the sections numbered 1, 
For our purposes, this complex shape can 

be simplified and represented by only two surfaces, a spherical 
segment (dish) representing 3 and a cone representing 1 and 2. 
A l:@dimension scale was selected to fit the model in the 
existing test chamber. 

In contrast with the cylindrical model, both the conical 
sidewall and the dish bottom are'hypothesized to be controlled 
by membrane stiffness, and thus the appropriate quantity to 
scale for- both segments is the membrane compliance. Since the 
in-plane stresses are carried in the inner and outer faces of 
the steel sandwich structure, the scaled cone and scaled dish 
are 1./8 the total face thicknesses. The hypothesis of membrane- 
stiffness control was subJect to some doubt in the case of the 
bottom dish, and one result of the experimental analyses has 
been to resolve this point. 

The scale model described above should simulate the NR 
behavior of the original structure when exposed to pressure 
fluctuations below structural resonances of either the original 
or the scale model. An estimate of the lowest structural 
resonance will define the upper frequency limit to the model's 
usefulness. 

Concentrating our attention on the larger and thinner cone 
structure, we might consider bending waves along the slant height 
and the circumference. As in the case of a cylinder, we see that 
only integral numbers of wavelengths are allowed around any 
circumference lying in a plane perpendicular to the axis, and 
thus no net volume displacement is expected inside from such 
resonant motion. The first radial expansion mode may be estimated 
by the ring frequency of the largest circumference; this would 
occur at 3200 Hz in the model and l/8 this, or 400 Hz in the 
original. 

We can estimate the lowest flexural resonance fre uency of 
the conical shell by replacing it with a cylinder of t it e same 
average radius. Thus,for the 1:8 scale model, the height of the 
cylinder is 16 in., and its average diameter is 5 in. The 
lowest internal acoustic resonance is fa = 425 Hz. From Eq. (90>, 
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or9 fmin= 76 Hz.This resonance, which is presumably non-volume- 
pumping, will occur in the frequency range of the experiment. The 
asymptotic frequency separation between structural modes is 

2KCe 2 x 10-j x2x10 5 
Elf =.A= 2~5.16 = 0.8 Hz 

Thus, in the region of structural resonance, we can expect many 
resonances to be observed in the vibration response. 

NH Measurement Apparatus 

Quasistatic pressure testing was carried out in the same 
test chamber as described above. In order to accommodate the 
larger size of the proposed model, the 15-in. diameter loudspeaker 
was removed to the outside of the chamber. For a later part of 
this experiment, a source of adjustable low-pressure air was 
brought into the chamber. No significant change was noted in 
the frequency range over which a uniform pressure field could be 
generated; the new scale factor makes the test range of 20 to 
200 Hz correspond with 2.5 to 25 Hz in a full-scale experiment. 
Uniform sound pressure levels of 105 dB were developed inside 
the test chamber. 

Construction of Outer Shell Model 

The cone portion of the model was constructed of steel 
0.002 in. thick. Since such thin steel is not available in a 
sheet large enough (20 in. x 40 in.), the surface was constructed 
by joining together a number of triangular pieces, each having 
a height of 20 in. and a base of 6 in. Eleven such pieces were 
joined b 

5 
spot-welding a narrow (l/16 in.) overlap seam as shown 

in Fig. 3. A strip of tape seals each seam air-tight. 

'The validity of substituting a pieced construction for a . 
homogeneous sheet was investigated by tensile-testing sample 
2-mil steel strips 6 in. long and l/2 in. wide, and comparing 
the force-elongation curves with those of strips having spot- 
welded joints and also epoxy joints. 
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FIG.43 
SPOT-WELDED SEAM 
(SPACING IS l/8 IN.) 

It was observed that, after a short region of creep of the 
sample in the test machine jaws, a long linear region follows 
where all samples, both without and with joints, behave alike. 
In each case two samples were tested, and the results are identica: 
until the point of rupture is reached. It is concluded that the 
use of the spot-welded seams has no effect on the membrane com- 
pliance. 

The bottom dish of the model was constructed from a steel 
pan sold as a child's winter toy. Its radius of curvature and 
overall diameter were suitable, but its thickness was 0.032 in., 
or approximately twice the thickness required in the model. How- 
ever, it was used for the first assembly to check the behavior 
of the cone wall, and to investigate the hypothesis of membrane- 
stiffness control of such a large-radius spherical segment. 
Although the thickness of 0.032 in. is double that for a scale 
model based on plane stress, it is less than l/4 the required 
thickness (0.14 in.) if bending rigidity is assumed to control 
the behavior. This would scale bending stiffness by 1:64, and 
give an extremely low NR in the tests. 

The steel bottom dish is shown in Fig. 44 with the ring used 
to align the rather flexible cone during the application of the 
final epoxy joint. A rubber insert in the joint of the ring 
keeps it from contributing to the compressional stiffness of the 
cone. The assembled cone is shown in Fig. 45. The top of the 
cone is truncated, and a l/2 in. thick disc of aluminum 1 in. in 
diameter is epoxied in place. 
support pins and the l/2 in. 

This allows fitting of the two 
receiver microphone access hole. 

The model is shown in the test chamber in Fig. 46. 
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FIG. 44 
BOTTOM DISH AND RING 

FIG.45 
ASSEMBLED CONE 
(1~8 SCALE) 
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FIG.46 
SURFACES SMOOTHED BY 
2.5 CM Hg INTERNAL 
PRESSURE 

The results of the NT3 tests are presented in Fig. 47(a). 
The curve shows the measured NR. The results shown in this 
Figure are surprisingly low, and a number of resonances are 
observed starting at 80 Hz. Inspection of the cone showed a 
number of wrinkles in the skin caused by distortions during the 
spot-welding of the seams. To investigate the possibility that 
these corrugations do not stiffen, but actually may act as small 

I bending-rigidity controlled areas, a plastic tube carrying air 
at low pressure (not above 5 cm Hg) was introduced into the 
model. This pressurization served to smooth the skin in many 
places (Fig. 46), and the results shown in Fig. 47(b) show 
quite a significant'difference in the measured NR. About 20 dB 
of NR is obtained, and resonant effects below 100 Hz are eliminated 

While these results are not close to the 40 dB NR predicted 
by quasistatic analysis, it is safe to conclude that the compliance 
of the bottom dish is not bending-rigidity-controlled, and that 
a cone constructed without wrinkles or corrugations may well 
follow the membrane-rigidity hypothesis better than the model 
tested here. 
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FlG.47Ia) NR DATA l/8 SCALE MODEL SECTIONS 1 
AND 2 OF APOLLO CM. (NOT PRESSURIZED) 
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dl 

FlG.47ib) NR DATA l/8 SCALE MODEL SECTIONS 1 
AND 2 OF APOLLO CM (PRESSURIZED) 

Membrane-Stiffness-Controlled Walls 

Considerable disagreement was reported between theoretical 
and experimental values of NR for the outer-shell model in, the 
preceding paragraphs. Not only was the experimental NR much less 
than predicted by membrane-stiffness-controlled shell theory, but 
resonant dips in the NR were seen (Fig. 47(a)) at frequencies 
between 80 and 200 Hz. 
expansion mode, 

This is quite far below any radial- 
which would allow net volume displacement to 

occur. It was suggested that, in the case of the conical outer 
shell, wrinkles in the 0.002-inch steel skin affect the NR. To 
investigate this, a second outer-shell model was constructed. 
A 1:lO dimension scale was used instead of 1:8. 
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Construction and NR Tests of Aluminum Outer-Shell Model 

The second outer-shell model to be constructed, shown in 
Fig. 48, renroduces only sections 1 and 2 of Fig. 14. The conical 
shell described above was constructed from 0.002-in. thick steel, 
the proper thickness for a 1:8 scale model. The present 1:lO 
scale would require 0.0016-in. steel, which would also require a 
pieced-together construction. Since such construction was sus- 
pected of affecting the membrane-stiffness control through the 
dimpling, aluminum sheet was used instead. 

0.0048 in., 
The appropriate thick- 

ness, is three times as great, since the ratio of the 
Young's modulus of steel to that of aluminum is 1:3. Such alumi- 
num sheet 0.005 in. thick was available in a size large enough to 
construct the model from a single Tiece. 

The single seam used to fabricate the model could not be 
welded successfully in aluminum with the available equipment. 
A cemented seam was used instead, with a strip of tape to insure 
against small air leaks. Such cement or epoxy seams were 
previously found to have no effect on the elastic modulus of 
the steel test strips. It would be expected that this would 
also apply to aluminum three times as thick. 

The cone was terminated with a l-in. thick aluminum plug 
at the top, and was sealed to a thick wooden base. 
is shown in the test chamber in Fig. 48. 

The assembly 
The comparative 

smoothness of this model is evident in a comparison with Fig. 46 
showing the earlier model. Access for the receiver microphone 
was provided through the wooden base, 

FIG. 48 
VIBRATION PICKUP POINTS 
ON OUTER CONE ONE-TENTH . 
SCALE MODEL 
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The results of the NR tests are shown in Fig. 49. The 
curve shows the measured NR. It is quite flat and shows 
higher NR than the curves taken for the 1:8 model. The new 1:lO scale makes the test range of 20 to 200 Hz correspond with 
2 to 20 Hz in the full-scale structure. Uniform sound pressure 
levels of 108 dB were obtained inside the test chamber. 

FIG.49 NR DATA l/10 SCALE MODEL 
SECTIONS 1 AND 2 OF APOLLO CM 

To check the possible connection between lower NR values 
and wrinkles, a single dimple was temporarily made in the model 
wall, and a 6-dB reduction in the NR was observed at 90 Hz. 
Removing the pressure allowed the wall to return to its previous 
shape, and the NR rose to its previous value. 
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Vibration Measurements 

A 'small piezoelectric accelerometer was then mounted at 
three positions on the model, as shown In Fig. 48. Applying the same uniform 108 dB SPL acoustic excitation as used to 
measure the NR, a plot of the wall vibration versus frequency 
was obtained. Such plots are shown In Figs. 50 and 51. me 
lower curve in Fig. 50 is the background vibration level, 
measured with no acoustic excitation. Sufficient slgnal-to- 
noise ratio exists at all measurement frequencies to determine 
the actual vibration levels without narrow-band filtering. 
These plots show a number of distinct resonances below 80 Hz, 
and then a quite uniform increase in vibration level of 
approximately 24 dB/octave. 

This Is in sharp contrast with the accelerations to be 
expected from the NR curve of Fig. 49, Since it shows a 
constant NR, corresponding to a constant volume displacement, 
we would expect a slower 12 dB/octave increase in the wall 
accelerations. The resonances observed are not necessarily 
unexpected, but they are not capable of producing net volume 
displacement inside, and thus would not affect the observed NR. 

The preceding discussions have shown the usefulness of 
detailed examination of wall structures supposedly controlled 
by membrane-rigidity alone. The results for the l:lO-scale 
smooth cone have demonstrated that quite different behavior is 
observed, depending on whether or not wrinkles or corrugations 
are present. The validity of the simple quasistatic analysis 
for cone structures is supported by the data, although the ab- 
solute levels are not so high as predicted. 

Vibration measurements have verified the presence of 
resonant modes in the wall structure, which, as predicted, are 
not associated with corresponding fluctuations of NR. 

RESONANCES OF INTERSPACE CONTAINED BETWEEN AXISYMMETRIC SHELLS 

Recap of Theoretical Study 

Chapter V presents a theoretical study of the acoustics of 
the interspace between axisymmetric shells. An approximation 
technique, the Raylelgh-Ritz method, was adopted to predict the 
upper limit to the acoustic resonances in the interspace when 
this region is not geometrically simple enough to handle 
analytically. After illustrating and verifying this method, 
both with a simple problem which could be handled analytically 
and with approximation technique, an acoustic model of the 
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FIG.50 POSITION 1, VIBRATION LEVEL, l/10 SCALE 
MODEL SECTIONS 1 AND 2 OF APOLLO CM 
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FIG.51 POSITION 3, VIBRATION LEVEL, l/10 SCALE 
MODEL SECTIONS 1 AND 2 OF APOLLC’ CM 
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Apollo. CM was analyzed. Two of the resonances calculated fall 
into the range below 50 Hz. These two resonances are charac- 
terized by: 

Mode Shape Frequency Type of 
Resonance 

* = [COS (y) - 0.361 co9 (q)] ~0s m9 40 * y=(&Litudinal 
mode 

q - [sin (F) + 0.476 sin ($$)I cos m@ 43 Hz ;n;Authal 

mode 

This section describes the experimental analysis of the 
acoustic resonances; The purpose of the experiments was to 
locate resonances, especially below 50 Hz in the interspace, 
and to identify these resonances as to their '!longitudinal" or 
"azimuthal" character. 

Experimental Model and Apparatus 

Model.--The acoustic model of the Apollo CM was constructed 
to a l:lOscale. Frequencies measured, therefore, will be ten 
times those of the full-scale model. The model consists of 
three basic parts, as illustrated in Figs. 52 and 53. 

1. A wooden carved-out base plate (used in an earlier 
experiment) 

2. A truncated aluminum cone 

3. A wooden inner piece separated from the base plate and 
cone by dowel spacers 

The dimensions of the model are shown in Fig. 54. The truncation 
of the small curved surface that would exist atop the CM has 
negligible effect on the acoustics of the interspace. The base 
plate was fitted with rubber tubing along its bottom edge to 
assist in allowing a tight fit. Any potential air leaks at the 
bottom were eliminated by applying tape and clay. 

142 



a. 
b. 

C 

WOODEN BASE PLATE 
WOODEN INNER PIECE 
WITH DOWEL SPACERS 
TRUNCATED ALUMINUM SHELL 
WITH 17/64” MICROPHONE 
HOLES LABELED A THROUGH J 

TRUNCATED ALUMINUM CONE 

WOODEN INNE 

FIG. 52. l/10 SCALE MODEL OF APOLLO CM 



FIG.53 PHOTOGRAPH OF INNER WOODEN 
PIECE AND WOODEN BASE PLATE 
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FIG. 54 DIMENSIONING OF l/10 SCALE MODEL OFAPOLLO CM 



Apparatus.-The two problems encountered in measuring the 
resonances are: 

1. How to excite the acoustic resonances while maintaining 
"rigid" boundaries. 

2. How to measure the acoustic signal at various positions 
in the interspace without perturbing the sound field. 

The first problem is solved by using a horn driver with a high- 
impedance 'snout." A high-impedance source is desired because 
the driver is replacing a solid, high-impedance surface. In 
source position 1 (see Fig. 55) the snout consists of a small 
amount of packed steel wool followed by a wire-filled tube of 
13/16 in. inner diameter. In position 2 (see Figs. 54 and 55) 
the wire-filled tube is followed by a l/2-in. diameter, 2-in. 
length tube of tightly packed steel wool. The frequency response 
of these sources in the free field was measured and found to be 
fairly constant below 1000 Hz. Since the source of position 1 
excites the model symmetrically, only axially symmetric (m = 0) 
modes are excited. The m refers to eim' dependence. The asym- 
metrically placed source in position 2 excited both m=O and m# 0 
modes. 

The measurement of interspace pressures is accomplished by 
a l/4-in. Bruel and Kjaer condenser microphone. 

?$Xin. 
Holes of 

diameter are drilled in the side of the cone in posi- 
tions labeled A through J in Figure 52. When not in use, these 
holes are filled with shallow wooden caps. When the relative 
phase between signals at two different positions in the model 
was desired, a second l/4-in. Bruel and Kjaer condenser micro- 
phone was used. 

A schematic of the apparatus is illustrated in Fig. 55. 
The frequency response of the interspace is plotted by a General 
Radio Graphic Level Recorder. The relative phase is measured by 
feeding the two microphone signals into the horizontal and 
vertical inputs of the oscilloscope, and observing the Lissajous 
pattern. 

Characterizing the Resonant Modes 

Symmetric m = 0 modes are characterized by a mode shape 
function 3 that depends only on s. This entails measurements 
in microphone positions A through G. The lowest m = 0, n = 1 
mode is characterized by maxima at positions A and near G, and 
by a minimum somewhere near E. Asymmetric modes, especially 
m= 1 and m = 2 modes, are determined by finding from Lissajous 
patterns the relative phase between signals received at micro- 
phone positions G, H, I and J. 
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FIG. 55 SCHEMATIC OF EXPERIMENTAL SET-UP 
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Experimental Results 

In the 1:lO scale model, we are primarily concerned with 
resonances below 500 Hz (50 Hz full-scale). Two such resonances 
are observed: one at 315 + 20 Hz and one at 415 + 10 Hz. The 
+ 10 and + 20 Hz tolerances correspond to small &anges in the 
xodel setzup. It is to be noted that these resonances are 
fairly sensitive to changes in the bottom and side spacing 
(especially for the m = 0 mode). The smaller the spacing, the 
higher the kanetic energy and, therefore, the lower the 
frequency. 

The lower resonance is found to be the lowest m = 0 mode; 
the resonance at 415 Hz was identified as the lowest m = 1 
mode. Another resonance, 
located at 745 + 10 Hz. 

identified as the m = 2 mode, was 
Note that the reading from the graphic 

level recorder 8oes not give the resonance frequency precisely 
(especially at higher frequencies). The numbers given for the 
resonances are found more exactly with an oscilloscope and 
frequency counter. 

Sample frequency-response plots are displayed in Fig. 56. 
!Ihe three plot segments correspond to different microphone 
positions. 

Comparison with Theory - Conclusions 

The table below shows the important theoretical calculations 
and experimental results. The experimental data is adjusted to 
full scale (frequencies are divided by 10). 

Mode 

m=O 
m=l 
m=2 

Resonance Frequency 
Experimental Theoretical 

(upper limit) 
31.5 f 2 Hz 40.5 Hz 
41.5 + 1 Hz 43.2 Hz 
74.5 + 1 Hz 80.5 Hz 

Not only does the theory furnish an upper limit to the 
actual resonance frequency, but it also provides a result which 
is fairly close to the upper limit. Moreover, careful analysis 
of the frequency plots with the microphone in positions A 
through G indicates that the experimental mode shape is in good 
qualitative agreement with the theoretical prediction. 



w 
FREQUENCY PLOT, 
MICROPHONE AT 
POSITION A 

(b) 

FREQUENCY PLOT, 
MICROPHONE AT 
POSITION E 

(cl 

FREQUENCY PLOT, 
MICROPHONE AT 
POSITION G 

FIG.56 FREQUENCY - RESPONSE PLOTS OF INTERSPACE’ 
PRESSURE 
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The above,.provides reasonably conclusive evidence that there 
exist two natural acoustic resonance frequencies below 50 Hz in 
the interspace region of the acoustic model of the Apollo CM. 
One of these is of "longitudinal" character; the other is an 
azimuthal resonance. If excited, these resonances may not be 
damped out. There exists, therefore, the possibility of noise- 
reduction problems at these frequencies unless effective 
methods of low-frequency sound absorption are employed. 

RECOMMEZNDATIONS FOR THE DESIGN AND CONSTRUCTION 
OF AN ACOUSTIC MODEL OF TI-IE APOLLO CM 

Introductory Remarks 

The preceding analyses have provided a basis for suggesting 
the primary modes of sound transmission in the Apollo CM at low 
frequencies. In this section, we describe a simplified model of 
the Apollo CM that will simulate its acoustical performance. Its 
detailed construction and structural configuration is quite dif- 
ferent from the actual CM. The purposes of the deviations from 
the original are: 

1. to make it simpler to change certain structural and 
acoustical features of the model 

2. insofar as possible, 
easier to fabricate 

to make the model lighter and 

3. to allow a testing of the conclusions of this report 
with regard to the relative importance of flexural 
vs membrane rigidity and resonance effects 

4. to reduce the cost of model construction 

Selection of the Skin Thicknesses 

It is 
A simplified diagram of the Apollo CM is shown in Fig. 13. 

formed of sandwich panels with dimensions and materials 
as indicated in Table I. We believe that this structure can be 
modeled with homogeneous steel and aluminum panels applying the 
following principles: 

1. Steel sandwiches are replaced by steel plates, aluminum 
sandwiches are replaced by aluminum plates, except as 
noted below. 
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2. 

3. 

4. 

5. 

Membrane-rigidity-controlled elements are replaced by 
homogeneous plates of thickness 2t = H. In this case, 
steel (aluminum) plates may be replaced by aluminum 
(steel) plates if the thicknesses are changed inversely 
as the ratio of Young's modulus. 

Rending-rigidity-controlled elements are replaced by 
homogeneous plates of thickness H = h (6t/h) 'I3 In 
this case, steel (aluminum) plates may be replaied by 
aluminum (steel) plates if the thicknesses are changed 
inversely as the ratio of Young's modulus. 

Resonant effects in the structure are not modeled; it 
is not possible to model simultaneously flexural rigidity 
and wavespeed of a sandwich with a homogeneous plate. 
This makes properties such as core density and ablating 
material density and damping unimportant. 

Resonant effects in the acoustic spaces, particularly 
in the space between the shells,are probably affected 
by the "Q-felt." The model should be designed so that 
this space can be filled with a material of similar 
flow resistance. 

Our analyses in Chapter III suggest that sections 4 and 6 
display flexural rigidity control in their NR behavior while 
sections 1, 2, 3, 5, 6, 7, 8 and 9 are membrane-controlled. 
They are to be modeled,therefore,according to the rules in 
items 2 and 3 above. A list of appropriate homogeneous 
panels corresponding to the sandwich panels in Table I is 
given in Table VI. 

Inter-Shell Connections 

The connections between the shells of the model should be 
made between rigid joining sections. A suggested arrangement 
is shown in Fig. 57. A rigid frustrated conical plug "A" is 
used as a structural termination at the apex of the outer 
canister. This mounts to a supporting ring on the hatch 
section of the inner canister by three vibration mounts. The 
combined stiffness of these mounts should be less than that of 
the ledge-hatch combination; 

3K, ( ra2/$, 6 ( 163) 
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TABLIZVI 

HOMOGENEOUS PANELS COmSPONDING.TO SANDWICH PANELS IN TABLE I 

section Material Thickness H (mils) Controlling Behavior 

1 steel* 16 membrane 
2 11 16 If 

3 II 120 II 

4 aluminum 780 bending 

5 11 20 membrane 

6 11 397 bending 

7 11 40 membrane 
8 11 32 11 

9 II 66 II 

*If aluminum skins are substituted for steel, 
increase thickness H by factor of 3. 
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RIGGING EYELET ( NOTE OTHERS) 

ISOLATING CONNECTORS 

/ATTACHMENT PLATE B 

FIG.57 ATTACHMENT POINTS AND STRUCTURAL 
CONNEXT’IONS IN CM ACOUSTIC MODEL 
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where -Km is the individual mount stiffness, a is the ledge 
radius (17.8 in.) and C4 6 is the acoustic compliance of the 
ledge-hatch combination is determined in Chapter III. This 
requires 

Km s 0.25 lb/in. (164) 

This is a very soft mount, and cannot be relied on to support 
any weight of the inner canister. It is essentially a guide 
rod that keeps the inner canister from rocking. 

The lower connection is made between mounting rings C and 
D on the inner and outer shells. These rings can be fairly 
heavy. Ring C is placed at the junction of the spherical 
segment base of the inner shell and its lower cylindrical segment. 
Ring D is placed where the spherical segment base of the outer 
shell joins its conical section. They can be jointed by relative1 
stiff spars, sufficiently rigid so as not to have resonances below 
100 Hz or so. 

Modeling the Q-Felt 

The prototype Apollo CM uses a dense glass fiber blanket for 
thermal insulation within the space between the two shells. We 
have investigated the possible acoustic effects that such a 
blanket would have. As presently envisioned, the blanket is 
formed from Owens Corning PF-105-700 Fiberglas. It has an 0.00005 
in. diam,fiber and is compressed to a density of 6 lb/ft3. Glass 
fiber of this fiber diameter and density has a flow resistance 
of approximately 3000 rayls/in. (Ref. 34). Since this is much 
larger than the acoustic impedance of the sound wave, any material 
that can be placed in the space between the shells that will 
occupy the same volume that the Q-felt does, will probably be an 
acceptable substitute. Some candidates are balsa wood and closed- 
cell polystyrene foam. 
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RECOMMENDATIONS FOR ADDITIONAL STRUCTURAL MODELS 
FOR TESTING NR PREDICTION METHODS 

Introduction 

In developing the methods for predicting low-frequency NR 
presented in this report, we have sought to delineate classes 
or primary forms of structural and acoustic behavior. Our hope 
is to assign sound transmission characteristics to each, and to 
treat a complex structural configuration by reducing its behavior 
to the appropriate set of forms. Some of these forms of behavior 
(cymsl-static deflection,interspace resonances and vent-shell- 
internal volume resonance) have been examined theoretically and 
experimentally. Others, such as structural resonance, and the 
effect of bridging elements between the shells, have not been 
so fully examined. The purpose of the models described here is 
to suggest ways of analyzing experimentally other potentially 
significant forms of behavior. 

In this section we shall specify wall constructions which 
should be useful.for studying noise transmission due to structural 
discontinuities and bridging connections between shells. Appro- 
priate structural parameters, such as wall thicknesses, dimensions, 
etc., are suggested on the basis of analytical studies of these 
effects. 

Non-Uniform Wall Structures 

The quasi-static compliance calculations derived in Chapter 
III assume that the shells have uniform properties throughout. 
Actual structures have hatches, stiffeners, bulkheads, etc., 
which locally stiffen or weaken the shell. 

The first recommended test structure is shown in Fig. 58. 
This structure, which is very much like the cylinder discussed 
earlier in this chapter, would be designed, however, to have a 
fundamental acoustic resonance at 100 Hz. This resonance 
frequency requires that the cylinder be 5 ft long. Let us choose 
a 3-ft diameter and a skin thichess of 0.032 in. The funda- 
mental structural resonance will be 

'f min = 13.5 (H/a>l12 fa = 57 Hz 

If the cylindrical shell edges are simply supported. 
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If the cylindrical skin is attached to rigid end pieces by a 
suitable clamping arrangement, there should be no noticeable 
effect on tne NR of this cylinder due to resonance as stiffening 
ribs are added. 

RIGID EN 
PIECES 

LIGHTWEIGHT 
CYLINDRICAL 
STRUCTURE 

> 

STIFFENING RIBS 

FIG.58 CYLINDER WITH AXIAL STIFFENERS TO TEST 
EFFECT OF STRUCTURAL INHOMOGENEITY 

Let us now suppose that the cylinder wall is not connected 
to the end pieces. However, the edges must be sealed, e.g. with 
heavy tape, to keep air from entering the contained volume. The 
lowest resonance of the cylinder now corresponds to the condi- 
tion where the circumference is a complete bending wavelength, or 
to A=2va. The lowest structural resonance in this case is 

f min = 2500 H (in.) = 1 Hz 
h2(ft) 

(166) 
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The lowest structural resonance frequency is greatly reduced 
by removing the restraint at the end pieces. The addition of 
ribs will cause some of these low-frequency modes to become 
'volume-pumpers and reduce the NR. The added ribs should be 
sufficiently rigid so that their first resonance is 100 Hz or 
higher. 

i Effect of Bridging Connections 

When direct mechanical connections are made in double-shell 
structures, an additional path for sound transmission is avail- 
able. In Fig. 59, an experimental arrangement is shown that 
illustrates a method of demonstrating these effects. Three 
ctinnecting spars are suggested: "A" is a connection between 
Faints on Ehe curved sectioffs? "B" 1s a connection between 

resistive positions, and C' is a spar between positions of 
very high impedance. Only one spar would be Involved In a 
single experiment. 

CONNECTING 
SPARS LIGHTWEIGHT 

STRUCTURE 

FIG. 59 DOUBLE CANISTER STRUCTURE WITH 
CONNECTING SPARS AT LOCATIONS 
OF VARYING MECHANICAL IMPEDANCE 
TO TEST EFFECT OF BRIDGING ELEMENTS 
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In Fig. 60 we show an equivalent circuit that aids us. in 
evaluating the effect of connections on RR. The source velocity 
vs Is the unloaded skin vibration amplitude on the outer shell 
in the absence of the spar. The point impedance of this shell 
1s ZocJ compliant for spar "A: and resistive for spar "B." 

ziC 
Is a similar impedance for the inner cylinder. The translational 
impedance .of the spar, Zsp& will probably be its mass reactance 
at frequencies below any resonance of the spar itself. The 
appropriate impedances are: 

Z ES = 0.12 7 a f 1 (curved cylinder) (Ref. 3) 

(167) 

z = 2.2$ (flat panels) (Ref. 23) 
a 

z spar = - iw M spar 

Z SPAR 

FIG.60 EQUIVALENT CIRCUIT FOR DERIVING 
SPAR MOTION 
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Using the general relation 

Z 
vie = z,, + y, + Zspar 068) 

and the relations above for the impedances, the velocity can 
be computed. The point motion vie of the attachment to the 
‘inner cylinder can be converted to volume velocity from 
Hecklls analysis (Ref. 33) for flat plates, and from Roark 
(Ref. 31) for the curved section. It must be remembered that 
this volume velocity will be coherent with that existing in 
the absence of the spar. The combined effect of both compo- 
nents of volume velocity must be considered to evaluate~the RR. 

Some suggested experimental parameters are: 

Outer cylinder: 1 = 48 in., a = 18 in., H - 0.032 in. 

Inner cylinder: ,e = 42 in., a = 15 in., H = 0.032 in. 

The spar should be long enough to reach between the shells and 
heavy enough to satisfy the condition Zspar > Zoc, Zic at the 
upper range of the frequency of interest (50 Hz in this case). 
At lower frequencies for which Zspar = Zoc, Zic interesting 
effects should develop. 
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CHAPTER VII 

IMPLICATIONS FOR DESIGN 

CHOICE OF STRUCTURAL GEOMETRY 

We saw in Chapters III and VI that the choice of structural 
geometry can have a very significant effect on the low-frequency 
noise reduction. The flat structural segments have a compliance 
which is controlled by flexural stiffness, whereas membrane stresses 
tend to dominate the behavior of curved structural segments. 
Generally speaking, membrane-controlled compliances are signifi- 
cantly more resistant to volume deflection than are flexural ele- 
ments. In the case of the Command Module, the inner-shell sound 
transmission was primarily dominated by the.flat ledge section 
of the hatch. As a result, only 10 dB of NR was achieved by 
the inner shell, whereas the outer shell, which had no flat 
segments, had a noise reduction of 40 dB. 

In Chapter III analyses are given which suggest when membrane 
control of curved structures will be obtained. In the case of the 
cylinder, the length must be somewhat greater than the geometric 
mean of the radius and the wall thickness of the cylinder. For 
the case of a spherical shell segment, the depth of the segment 
must be sufficiently large in comparison with the radius of curva- 
ture. These criteria are only general, however, and the detailed 
behavior will depend on the particular situation. In cases where 
doubt is anticipated, an experimental analysis of typical systems 
is likely to be more effective in leading one to an appropriate 
conclusion than a complex series of detailed calculations. 

The general axisymmetric shape of space vehicles is chosen, 
of course, for constructional and aerodynamic reasons. It 
happens, however, that this geometry also favors high values 
of low-frequency NR. As we have discussed, this geometry tends 
to discriminate against volume-pumping modes. 

DISCRIMINATION AGAINST STRUCTURAL RESONANCES 

We have seen in Chapters III and VI the deleterious effects 
that structural resonances can have on the low-frequency noise 
reduction. Flat segments can have structural volume-pumping 
resonances at relatively low frequencies. If a conical or 
cylindrical shell is interrupted by longitudinal ribs, some 
of its lower-frequency resonances can also become volume-pumpers. 
Volume-pumping is important as long as the inner contained 
volumes are stiff - i.e., below their first acoustical resonance. 
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There are two methods by which one can avoid such structural 
resonance effects. One way is to select structural configurations 
and parameters so that the lowest resonance frequencies occur 
above the first acoustic mode of the contained space. This can 
be done by selecting panel sizes and thicknesses so that the 
lowest panel mode of the structure is shifted to higher fre- 
quencies. 

The other way consists of adding damping to the structures, 
but this has marginal practical utility. An increase in the 
structural damping by a factor of 10 can result in an increase 
in the noise reduction by 10 dB in a band near the offending 
resonance. Increases in damping of this order, however, are not 
usually achieved easily. If the structure is formed from sand- 
wich panels, then additional applied damping usually involves a 
substantial weight penalty. It is conceivable that the structural 
panels could incorporate the damping, using a core material that 
has a high loss factor. This is perhaps the best hope for useful 
amounts of structural damping, but may involve considerable 
development effort. 

Other kinds of structural resonances that can occur at low 
frequencies include the resonances of mass elements attached to 
curved sections of structure. The 'point load impedance of a 
curved structure at low frequencies is a stiffness reactance 
(as given in Chapter IV). This stiffness can act with an 
attached mass to result in a volume-displacing resonant vibra- 
tion. 

COMBATTING THE EFFECTS OF ACOUSTIC RESONANCE 

The procedures used to minimize the effects of acoustic 
resonance on sound transmission at low frequencies generally 
parallel those for combatting structural resonance. mey 
include changing the geometry so that the undesirable resonances 
occur at higher frequencies and adding damping material (acoustic 
absorption) so that the resonance is attenuated. 

Roughly speaking, the condition for critical damping of 
acoustic modes is that the total flow resistance in the acoustic 
path be pc, the characteristic impedance of the acoustic medium. 
If the resistance is substantially smaller than this, the 
absorption will not be so effective as it could be. If it is 
substantially larger than this, the fluid will avoid the absorp- 
tion material by flowing around it, if alternate paths are 
available. 
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We saw-in Chapter III that double-walled shell structures 
can have low-frequency resonances if long path lengths are 
allowed. These resonances should be avoided, either by blocking 
the flow path so that the resonances are moved to higher fre- 
quencies, or by providing appropriate acoustic absorption in the 
interspace so that resonant modes are damped out. We saw that 
the thermal-insulating Q-felt is not a good acoustic absorber, 
since its flow resistance is very high compared with the acoustic 
impedance.of the medium. However, in the Apollo CM the Q-felt 
may block the flow path sufficiently so that the low-frequency 
modes do not occur. 

We also saw in Chapter III that low-frequency resonances may 
be associated with the venting system, in combination with portions 
of or all of the interspace volume. The effect of this resonance 
can be eliminated by designing the vent so that it has sufficient 
acoustic mass (constriction) for its resonances to occur at very 
low frequencies. A second approach is to introduce a flow 
resistance in the path, so that the resonance is critically 
damped. Vent damping should not cause significant vent operation 
problems, since the periods of the resonances of concern are of 
the order of one-tenth of a second, and this generally is much 
shorter than the time which the venting system needs to readjust 
the interspace pressure. 

GENERAL COMMENTS 

In a sense, design for good low-frequency noise reduction 
involves much the same considerations as design to contain the 
pressure in the spacecraft. The basic compliance analysis 
presented in Chapter III is closely related to the pressure 
vessel analysis that is required for predicting the structural 
integrity of the vehicle. There are subtleties in the acoustic 
design, however, that are not present in the mechanical structure 
design. These have to do primarily with the occurrence of 
structural and acoustic resonances that can severely diminish the 
NR provided by the structure. It is these resonances and their 
associated effects that we have tried to catalog and analyze in 
the discussions of this report. 

The transmission of sound is a complex problem. At all times, 
it is worth reconsidering the inclusion of experimental analyses 
of potential designs in any spacecraft development program. 
Acousticians, faced with the problems of predicting the acoustical 
behavior of rooms and the sound transmission properties of walls, 
learned long ago to couple their calculations with model studies 
and well-thought-out experiments. A similar development in the 
field of space vehicle design would result in a great improve- 
ment of our understanding of the basic processes at work in such 
structures and perhaps result in a significant improvement of the 
acoustical and vibrational behavior of these systems. 
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